Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 134(1-2): 147-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34479793

RESUMO

Compound heterozygosis is the most diffuse and hardly to tackle condition in aromatic amino acid decarboxylase (AADC) deficiency, a genetic disease leading to severe neurological impairment. Here, by using an appropriate vector, we succeeded in obtaining high yields of AADC protein and characterizing two new heterodimers, T69M/S147R and C281W/M362T, detected in two AADC deficiency patients. We performed an extensive biochemical characterization of the heterodimeric recombinant proteins and of the related homodimers, by a combination of dichroic and fluorescence spectroscopy and activity assays together with bioinformatic analyses. We found that T69M/S147R exhibits negative complementation in terms of activity but it is more stable than the average of the homodimeric counterparts. The heterodimer C281W/M362T retains a nearly good catalytic efficiency, whereas M362T homodimer is less affected and C281W homodimer is recovered as insoluble. These results, which are consistent with the related phenotypes, and the data emerging from previous studies, suggest that the severity of AADC deficiency is not directly explained by positive or negative complementation phenomena, but rather depends on: i) the integrity of one or both active sites; ii) the structural and functional properties of the entire pool of AADC proteins expressed. Overall, this integrated and cross-sectional approach enables proper characterization and depicts the functional result of subunit interactions in the dimeric structure and will help to elucidate the physio-pathological mechanisms in AADC deficiency.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/deficiência , Heterozigoto , Fenótipo , Adolescente , Adulto , Descarboxilases de Aminoácido-L-Aromático/genética , Biologia Computacional , Feminino , Humanos , Masculino , Mutação , Proteínas Recombinantes , Adulto Jovem
2.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199427

RESUMO

The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson's disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Amiloide/efeitos dos fármacos , Amiloide/genética , Dopamina/genética , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Multimerização Proteica/genética , alfa-Sinucleína/antagonistas & inibidores
3.
J Pept Sci ; 26(11): e3279, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32812282

RESUMO

Peptides are attractive drugs because of their specificity and minimal off-target effects. Short half-lives are within their major drawbacks, limiting actual use in clinics. The golden standard in therapeutic peptide development implies identification of a minimal core sequence, then modified to increase stability through several strategies, including the introduction of nonnatural amino acids, cyclization, and lipidation. Here, we investigated plasma degradations of hormone sequences all composed of a minimal active core peptide and a C-terminal extension. We first investigated pro-opimelanocortin (POMC) γ2/γ3-MSH hormone behavior and extended our analysis to POMC-derived α-melanocyte stimulating hormone/adrenocorticotropic hormone signaling neuropeptides and neurotensin. We demonstrated that in all the three cases analyzed in this study, few additional residues mimicking the natural sequence alter both peptide stability and the mechanism(s) of degradation of the minimal conserved functional pattern. Our results suggest that the impact of extensions on the bioactivity of a peptide drug has to be carefully evaluated throughout the optimization process.


Assuntos
Neurotensina/metabolismo , alfa-MSH/metabolismo , gama-MSH/metabolismo , Humanos , Cinética , Neurotensina/sangue , Agregados Proteicos , Proteólise , alfa-MSH/sangue , gama-MSH/sangue
4.
Int J Mol Sci ; 20(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121967

RESUMO

The role of jasmonates in defense priming has been widely recognized. Priming is a physiological process by which a plant exposed to low doses of biotic or abiotic elicitors activates faster and/or stronger defense responses when subsequently challenged by a stress. In this work, we investigated the impact of MeJA-induced defense responses to mechanical wounding in rice (Oryza sativa). The proteome reprogramming of plants treated with MeJA, wounding or MeJA+wounding has been in-depth analyzed by using a combination of high throughput profiling techniques and bioinformatics tools. Gene Ontology analysis identified protein classes as defense/immunity proteins, hydrolases and oxidoreductases differentially enriched by the three treatments, although with different amplitude. Remarkably, proteins involved in photosynthesis or oxidative stress were significantly affected upon wounding in MeJA-primed plants. Although these identified proteins had been previously shown to play a role in defense responses, our study revealed that they are specifically associated with MeJA-priming. Additionally, we also showed that at the phenotypic level MeJA protects plants from oxidative stress and photosynthetic damage induced by wounding. Taken together, our results add novel insight into the molecular actors and physiological mechanisms orchestrated by MeJA in enhancing rice plants defenses after wounding.


Assuntos
Ciclopentanos/metabolismo , Oryza/fisiologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/análise , Ciclopentanos/química , Resistência à Doença , Esterificação , Ontologia Genética , Oxilipinas/química , Reguladores de Crescimento de Plantas/química , Proteínas de Plantas/metabolismo , Proteômica , Estresse Fisiológico
5.
Molecules ; 23(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941855

RESUMO

α-Synuclein (α-syn) is a 140-amino acid protein, the physiological function of which has yet to be clarified. It is involved in several neurodegenerative disorders, and the interaction of the protein with brain lipids plays an important role in the pathogenesis of Parkinson's disease (PD). Polyunsaturated fatty acids (PUFA) are highly abundant in the brain where they play critical roles in neuronal membrane fluidity and permeability, serve as energy reserves and function as second messengers in cell signaling. PUFA concentration and composition in the brain are altered with age when also an increase of lipid peroxidation is observed. Considering that PD is clearly correlated with oxidative stress, PUFA abundance and composition became of great interest in neurodegeneration studies because of PUFA's high propensity to oxidize. The high levels of the PUFA docosahexaenoic acid (DHA) in brain areas containing α-syn inclusions in patients with PD further support the hypothesis of possible interactions between α-syn and DHA. Additionally, a possible functional role of α-syn in sequestering the early peroxidation products of fatty acids was recently proposed. Here, we provide an overview of the current knowledge regarding the molecular interactions between α-syn and fatty acids and the effect exerted by the protein on their oxidative state. We highlight recent findings supporting a neuroprotective role of the protein, linking α-syn, altered lipid composition in neurodegenerative disorders and PD development.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Humanos , Doença de Parkinson/metabolismo
6.
Biochem Pharmacol ; 173: 113722, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31756328

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the elderly people. To date, drugs able to reverse the disease are not available; the gold standard is levodopa that only relieves clinical symptoms, yet with severe side effects after prolonged administration. Many efforts are underway to find alternative targets for PD prevention or treatment, the most promising being α-synuclein (Syn). Recently, we reported that oleuropein aglycone (OleA) interferes with amyloid aggregation of Syn both stabilizing its monomeric state and inducing the formation of harmless, off-pathway oligomers. This study is focused at describing the interaction between Syn and hydroxytyrosol (HT), the phenolic moiety and main metabolite of OleA, and the interferences with Syn aggregation by using biophysical and biological techniques. Our results show that HT dose-dependently inhibits Syn aggregation and that covalent and non-covalent binding mediate HT-Syn interaction. HT does not modify the natively unfolded structure of Syn, rather, it stabilizes specific regions of the molecule leading to inhibition of protein fibrillation. Cellular assays showed that HT reduces the toxicity of Syn aggregates. Moreover, Syn aggregates interaction with the cell membrane, an important factor for prion-like properties of Syn on-pathway oligomers, was reduced in cells exposed to Syn aggregates grown in the presence of HT.


Assuntos
Doença de Parkinson/prevenção & controle , Álcool Feniletílico/análogos & derivados , Agregação Patológica de Proteínas/prevenção & controle , alfa-Sinucleína/química , Acetatos/química , Acetatos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos/química , Monoterpenos Ciclopentânicos/metabolismo , Humanos , Levodopa/farmacologia , Estrutura Molecular , Doença de Parkinson/metabolismo , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Álcool Feniletílico/farmacologia , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Piranos/química , Piranos/metabolismo , alfa-Sinucleína/metabolismo
7.
Food Chem Toxicol ; 144: 111626, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738375

RESUMO

Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the progressive loss of neurons. The accumulation of aggregated forms of the α-Synuclein (Syn) protein is the main cause of neurotoxicity in PD by disrupting cellular homeostasis until neuronal death. Scientific research is constantly looking for natural products as preventive agents against the progression of several neurodisorders due their safety and non-toxic nature. Neuroprotective phytochemicals include Maysin (Mys), the most abundant C-glycosilflavone in corn silk. In this work, the Mys protective role against damage by Syn amyloid aggregates - oligomers and fibrils - was investigated in SH-SY5Y human neuroblastoma cells obtaining novel and interesting information concerning the Mys molecular mechanism of action. Mys showed effectiveness in preventing the typical toxic events induced by Syn amyloid aggregates, i.e. oxidative stress and imbalance of intracellular calcium homeostasis. Mys exhibited a cytoprotective role, especially against Syn oligomers injury, activating an autophagic degradative process, thus playing a key role on several features of amyloid neurotoxicity. Therefore, Mys could be proposed for the first time to the scientific community as an interesting novel natural compound that might allow to develop alternative strategies to prevent the damage of Syn oligomers involved in Parkinson's disease.


Assuntos
Autofagia/efeitos dos fármacos , Biopolímeros/toxicidade , Flavonoides/farmacologia , Glucosídeos/farmacologia , alfa-Sinucleína/toxicidade , Biopolímeros/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Estresse Oxidativo/efeitos dos fármacos , alfa-Sinucleína/química
8.
Commun Biol ; 3(1): 764, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311636

RESUMO

Aggregation of human wild-type transthyretin (hTTR), a homo-tetrameric plasma protein, leads to acquired senile systemic amyloidosis (SSA), recently recognised as a major cause of cardiomyopathies in 1-3% older adults. Fragmented hTTR is the standard composition of amyloid deposits in SSA, but the protease(s) responsible for amyloidogenic fragments generation in vivo is(are) still elusive. Here, we show that subtilisin secreted from Bacillus subtilis, a gut microbiota commensal bacterium, translocates across a simulated intestinal epithelium and cleaves hTTR both in solution and human plasma, generating the amyloidogenic fragment hTTR(59-127), which is also found in SSA amyloids in vivo. To the best of our knowledge, these findings highlight a novel pathogenic mechanism for SSA whereby increased permeability of the gut mucosa, as often occurs in elderly people, allows subtilisin (and perhaps other yet unidentified bacterial proteases) to reach the bloodstream and trigger generation of hTTR fragments, acting as seeding nuclei for preferential amyloid fibrils deposition in the heart.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Bacillus subtilis/enzimologia , Pré-Albumina/metabolismo , Serina Proteases/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/química , Linhagem Celular , Humanos , Hidrólise , Espectrometria de Massas/métodos , Modelos Moleculares , Permeabilidade , Pré-Albumina/química , Conformação Proteica , Serina Proteases/química , Subtilisina/química , Subtilisina/metabolismo
9.
Sci Rep ; 8(1): 8337, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844450

RESUMO

α-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD); its deposits are found as amyloid fibrils in Lewy bodies and Lewy neurites, the histopathological hallmarks of PD. Amyloid fibrillation is a progressive polymerization path starting from peptide/protein misfolding and proceeding through the transient growth of oligomeric intermediates widely considered as the most toxic species. Consequently, a promising approach of intervention against PD might be preventing α-synuclein build-up, misfolding and aggregation. A possible strategy involves the use of small molecules able to slow down the aggregation process or to alter oligomer conformation favouring the growth of non-pathogenic species. Here, we show that oleuropein aglycone (OleA), the main olive oil polyphenol, exhibits anti-amyloidogenic power in vitro by interacting with, and stabilizing, α-synuclein monomers thus hampering the growth of on-pathway oligomers and favouring the growth of stable and harmless aggregates with no tendency to evolve into other cytotoxic amyloids. We investigated the molecular basis of such interference by both biophysical techniques and limited proteolysis; aggregate morphology was monitored by electron microscopy. We also found that OleA reduces the cytotoxicity of α-synuclein aggregates by hindering their binding to cell membrane components and preventing the resulting oxidative damage to cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA