Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mycologia ; 109(2): 200-209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28506119

RESUMO

Aflatoxins are among the most powerful carcinogens in nature. The major aflatoxin-producing fungi are Aspergillus flavus and A. parasiticus. Numerous crops, including peanut, are susceptible to aflatoxin contamination by these fungi. There has been an increased use of RNA interference (RNAi) technology to control phytopathogenic fungi in recent years. In order to develop molecular tools targeting specific genes of these fungi for the control of aflatoxins, it is necessary to obtain their genome sequences. Although high-throughput sequencing is readily available, it is still impractical to sequence the genome of every isolate. Thus, in this work, the authors proposed a workflow that allowed prescreening of 238 Aspergillus section Flavi isolates from peanut seeds from Georgia, USA. The aflatoxin biosynthesis cluster (ABC) of the isolates was fingerprinted at 25 InDel (insertion/deletion) loci using capillary electrophoresis. All isolates were tested for aflatoxins using ultra-high-performance liquid chromatography. The neighbor-joining, three-dimension (3D) principal coordinate, and Structure analyses revealed that the Aspergillus isolates sampled consisted of three main groups determined by their capability to produce aflatoxins. Group I comprised 10 non-aflatoxigenic A. flavus; Group II included A. parasiticus; and Group III included mostly aflatoxigenic A. flavus and the three non-aflatoxigenic A. caelatus. Whole genomes of 10 representative isolates from different groups were sequenced. Although InDels in Aspergillus have been used by other research groups, this is the first time that the cluster analysis resulting from fingerprinting was followed by whole-genome sequencing of representative isolates. In our study, cluster analysis of ABC sequences validated the results obtained with fingerprinting. This shows that InDels used here can predict similarities at the genome level. Our results also revealed a relationship between groups and their capability to produce aflatoxins. The database generated of Aspergillus spp. can be used to select target genes and assess the effectiveness of RNAi technology to reduce aflatoxin contamination in peanut.


Assuntos
Aflatoxinas/genética , Arachis/microbiologia , Aspergillus flavus/classificação , Aspergillus flavus/genética , Variação Genética , Sementes/microbiologia , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Impressões Digitais de DNA , Eletroforese Capilar , Marcadores Genéticos/genética , Georgia , Mutação INDEL , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
2.
J Nutr ; 137(12): 2723-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18029490

RESUMO

Fumonisin mycotoxins contaminate maize worldwide. Analysis of maize samples (n = 396) collected from fields in Guatemala from 2000 to 2003 found that lowland maize (<360 m) had significantly more fumonisin B1 than highland maize (>1200 m). For example, 78% of the lowland samples collected at harvest in 2002 contained >0.3 microg/g of fumonisin B1, whereas only 2% of the highland samples contained >0.3 microg/g. Maize from the 2002 crop collected from storage in the highlands just before the 2003 harvest contained significantly more fumonisin B1 compared with levels at harvest in 2002. All Fusarium-infected kernels analyzed from 9 random lowland locations in 2001 were infected with fumonisin-producing Fusarium verticillioides and no other Fusarium species, whereas in samples from the highlands, only 5% of the Fusarium-positive kernels were F. verticillioides. In 2005, maize samples (n = 236) from the 2004 crop were collected from local markets in 20 Departments across Guatemala. The analysis showed that maize from lowland locations was often highly contaminated with fumonisin and was frequently transported to and sold in highland markets. Thus, fumonisin exposure in the highlands will be greatest in groups that obtain their maize in the market place from commercial vendors. Based on a recall study and published consumption data, a preliminary assessment of daily intake of total fumonisins was estimated. Consumption of nixtamalized maize products made from >50% of the maize from commercial vendors in 2005 could result in exposure exceeding the recommended WHO provisional maximal tolerable daily intake.


Assuntos
Contaminação de Alimentos , Fumonisinas/efeitos adversos , Zea mays/microbiologia , Manipulação de Alimentos , Fusarium/isolamento & purificação , Guatemala , Humanos , Fatores de Risco , Fatores de Tempo
3.
Genome Announc ; 4(2)2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27081142

RESUMO

Aspergillus flavusandA. parasiticusfungi produce carcinogenic mycotoxins in peanut seeds, causing considerable impact on both human health and the economy. Here, we report nine genome sequences ofAspergillusspp., isolated from Georgia peanut seeds in 2014. The information obtained will lead to further biodiversity studies that are essential for developing control strategies.

4.
J Food Prot ; 77(5): 805-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24780336

RESUMO

The genus Aspergillus section Nigri, or the black aspergilli, represents genetically closely related species that produce the mycotoxins, ochratoxins and the fumonisins. Fumonisin B1 (FB1) is of an added concern because it is also a virulence factor for maize. Our preliminary data indicated that black aspergilli could develop asymptomatic infections with maize and peanuts plants. Symptomless infections are potential problems, because under favorable conditions, there is a potential for accumulation of ochratoxins and the fumonisins in contaminated postharvest crops. In the present report, the ability of black aspergilli from peanuts and maize to produce ochratoxin A and FB1 on maize kernels was assessed. One hundred fifty strains from peanuts and maize were isolated from several southeastern and midwestern states. Aspergillus nigri (A. nigri var. nigri) was the dominant species (87%), while Aspergillus foetidus, Aspergillus japonicus, Aspergillus tubingensis, and Aspergillus carbonarius were infrequently isolated. None of the wild isolates produced detectable amounts of ochratoxins. However, we do report the occurrence of the fumonisins B1, B2, and B3. Of 54 field isolates, 30% (n = 16) produced FB1, 61% (n = 33) produced FB2, and 44% (n = 24) produced FB3. The amounts of fumonisins produced during the test period of 30 days suggest that these strains might be weak to moderate producers of fumonisin on maize. To our knowledge, this is a first report of FB1 and FB3 production by isolates of black aspergilli from an American cereal and legume.


Assuntos
Arachis/microbiologia , Aspergillus/química , Aspergillus/metabolismo , Fumonisinas/análise , Micotoxinas/análise , Ocratoxinas/análise , Zea mays/microbiologia , Aspergillus/classificação , Aspergillus/isolamento & purificação , Contaminação de Alimentos/análise , Fumonisinas/metabolismo , Micotoxinas/metabolismo , Ocratoxinas/metabolismo
5.
J Microbiol Methods ; 94(3): 381-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23899775

RESUMO

Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri.


Assuntos
Aspergillus/metabolismo , Proteínas Luminescentes/metabolismo , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Análise de Variância , Aspergillus/genética , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Ocratoxinas/análise , Ocratoxinas/metabolismo , Plântula/microbiologia
7.
Toxins (Basel) ; 2(4): 399-416, 2010 04.
Artigo em Inglês | MEDLINE | ID: mdl-22069592

RESUMO

The black spored fungi of the subgenera Circumdata, the section Nigri (=Aspergillus niger group) is reviewed relative to their production of mycotoxins and their effects on plants as pathogens. Molecular methods have revealed more than 18 cryptic species, of which several have been characterized as potential mycotoxin producers. Others are defined as benign relative to their ability to produce mycotoxins. However, these characterizations are based on in vitro culture and toxins production. Several can produce the ochratoxins that are toxic to livestock, poultry, and humans. The black aspergilli produce rots of grapes, maize, and numerous other fruits and grain and they are generally viewed as post-harvest pathogens. Data are review to suggest that black aspergilli, as so many others, are symptomless endophytes. These fungi and their mycotoxins contaminate several major grains, foodstuffs, and products made from them such as wine, and coffee. Evidence is presented that the black aspergilli are producers of other classes of mycotoxins such as the fumonisins, which are known carcinogenic and known prior investigations as being produced by the Fusarium species. Three species are identified in U.S. maize and peanuts as symptomless endophytes, which suggests the potential for concern as pathogens and as food safety hazards.


Assuntos
Arachis/microbiologia , Aspergillus/metabolismo , Aspergillus/patogenicidade , Micotoxinas/biossíntese , Zea mays/microbiologia , Contaminação de Alimentos , Fumonisinas/metabolismo , Ocratoxinas/biossíntese
8.
J Microbiol Methods ; 79(1): 1-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19628011

RESUMO

The Aspergillus niger aggregate within the A. section Nigri is a group of black-spored aspergilli of great agro-economic importance whose well defined taxonomy has been elusive. Rep-PCR has become a rapid and cost-effective method for genotyping fungi and bacteria. In the present study, we evaluated the discriminatory power of a semi-automated rep-PCR barcoding system to distinguish morphotypic species and compare the results with the data obtained from ITS and partial calmodulin regions. For this purpose, 20 morphotyped black-spored Aspergillus species were used to create the A. section Nigri library in this barcoding system that served to identify 34 field isolates. A pair-wise similarity matrix was calculated using the cone-based Pearson correlation method and the dendrogram was generated by the unweighted pair group method with arithmetic mean (UPGMA), illustrating four different clustered groups: the uniseriate cluster (I), the Aspergillus carbonarius cluster (II), and. the two A. niger aggregate clusters (named III.A and III.B). Rep-PCR showed higher resolution than the ITS and the partial calmodulin gene analytical procedures. The data of the 34 unknown field isolates, collected from different locations in the United States, indicated that only 12% of the field isolates were >95% similar to one of the genotypes included in the A. section Nigri library. However, 64% of the field isolates matched genotypes with the reference library (similarity values >90%). Based on these results, this barcoding procedure has the potential for use as a reproducible tool for identifying the black-spored aspergilli.


Assuntos
Aspergillus niger/classificação , Aspergillus niger/genética , Impressões Digitais de DNA/métodos , Técnicas de Tipagem Micológica/métodos , Reação em Cadeia da Polimerase/métodos , Aspergillus niger/isolamento & purificação , Automação , Calmodulina/genética , Análise por Conglomerados , DNA Espaçador Ribossômico/genética , Genótipo , Estados Unidos
9.
J Nutr ; 133(10): 3200-3, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14519811

RESUMO

Fumonisin B1 (FB1) is a maize mycotoxin. In tortilla preparation, maize is treated with lime (nixtamalization), producing hydrolyzed FB1 (HFB1) due to loss of the tricarballylic acid side chains. This study determined the following: 1) whether nixtamalization by Mayan communities reduces total fumonisins, and 2) the steps in the process at which reduction occurs. Tortillas prepared by the traditional process contained FB1, FB2 and FB3 and their hydrolyzed counterparts. There were equimolar amounts of FB1 and HFB1 in the tortillas, but the total fumonisins were reduced 50%. The total FB1 plus HFB1 in the residual lime water and water washes of the nixtamal accounted for 50% of the total FB1 in the uncooked maize. HFB1 and FB1 were present in a 1:1 mol/L ratio in the water washes of the nixtamal, the masa dough and the cooked tortillas, whereas the ratio of HFB1:FB1 in lime water after steeping was 21. Water washes contained 11% of the FB1 that was in the uncooked maize. The results show that the traditional method reduced the total fumonisins in tortillas and reduced the sphinganine elevation (a biomarker closely correlated with fumonisin toxicity) in cells treated with extracts of tortillas compared with cells treated with extracts of contaminated maize.


Assuntos
Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Fumonisinas/análise , Zea mays/química , Farinha/análise , Guatemala , Temperatura Alta , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA