Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 37(9): 1409-11, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22555687

RESUMO

The authors report the development of an electric oxygen-iodine laser with higher output using a larger product of gain and gain length, g0L. A factor of 4.4 increase in laser power output on the 1315 nm atomic iodine transition was achieved with a factor of 3 increase in gain length. I(2P1/2) is pumped using energy transferred from O2(a1Δ) produced by flowing a gas mixture of O2-He-NO through three coaxial geometry radio-frequency discharges. Continuous wave (CW) average total laser power of 481 W was extracted with g0L=0.042.

2.
J Phys Chem A ; 111(29): 6713-21, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17461557

RESUMO

Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA