RESUMO
In this study the potential of new imaging techniques such as Magnetic Resonance Imaging (MRI), Matrix-Assisted Laser Desorption/Ionization (MALDI) profiling mass spectrometry ("MALDI Profiling") and Fourier Transform Infrared (FTIR) spectroscopic imaging was evaluated to study morphological and molecular patterns of the potential medicinal fungus Hericium coralloides. For interpretation, the MALDI profiling, FTIR imaging and MRI results were correlated with histological information gained from Scanning Electron Microscopy (SEM) and Light Microscopy (LM). Additionally we tested several evaluation processes and optimized the methodology for use of complex FTIR images to monitor molecular patterns. It is demonstrated that the combination of these spectroscopic methods enables to gain a more distinct picture concerning morphology and distribution of active ingredients. We were able to obtain high quality FTIR imaging and MALDI-profiling results and to distinguish different tissue types with their chemical ingredients. Beside this, we have created a 3-D reconstruction of a mature Hericium basidioma, based on the MRI dataset: analyses allowed, for the first time, a realistic approximation of the "evolutionary effectiveness" of this bizarrely formed basidioma type, concerning the investment of sterile tissue and its reproductive output (production of basidiospores).
Assuntos
Basidiomycota/química , Basidiomycota/citologia , Química Farmacêutica , Imagem Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
In this study, the potential of focus-variation microscopic imaging was evaluated in a study of morphological patterns of the potential medicinal fungus Hericium coralloides (Basidiomycota). We created three-dimensional reconstructions and visualizations using the imaging technique on a fresh H. coralloides basidioma. The aim was to approximate the spore dispersal efficiency of this basidiomata type regarding the investment of tissue biomass and its reproductive output (production of basidiospores). Results were correlated with published data gained from magnetic resonance imaging and micro-computed tomography. It is demonstrated that focus-variation microscopic imaging results in a more distinct picture of the morphology of the edible and potentially medicinal H. coralloides basidiomata. However, a direct measurement of spore production was not possible. Spore production could only be estimated in combination with a mathematical model because the surface was not directly measurable due to the cellular heterogeneity. However, focus-variation microscopic imaging allows a better and faster estimation of spore production compared with the published methods. Furthermore, it was found that a scanning resolution of 5× is sufficient for determining the fungal surface precisely because at a higher resolution artifacts occur, resulting in adulteration of the image.