Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 42(6): 1605-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602401

RESUMO

Selenium was recognized as an important aquatic contaminant following the identification of widespread deformities in waterfowl at the agricultural drainage evaporation ponds of the Kesterson Reservoir (California) in 1983. Since then, California has been the focal point for global research and management of Se contamination. We analyzed the history and current developments in science, policy, and management of irrigation-induced Se contamination in California. In terms of management, we evaluated the effects of improvements in the design of local attenuation methods (drainage reuse and evaporation ponds) in conjunction with the development of programs for Se load reductions at the regional scale (namely the Grassland Bypass Project). In terms of policy, the USEPA is currently working on site-specific water quality criteria for the San Francisco Bay Delta that may be a landmark for future legislation on Se in natural water bodies. We provide a critical analysis of this approach and discuss challenges and opportunities in expanding it to other locations such as the Salton Sea. Management lessons learned in California and the novel policy approach may help prevent future events of Se contamination.

2.
J Environ Qual ; 42(4): 1119-29, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24216363

RESUMO

Reduction of As(V) and Fe(III) is commonly the dominant process controlling the fate and transport of As in soils and sediments. However, the physical structure of such environments produces complex heterogeneity in biogeochemical processes controlling the fate and transport of As. To resolve the role of soil and sediment physical structure on the distribution of biogeochemical processes controlling the fate and transport of As, we examined the biogeochemical transformations of As and Fe within constructed aggregates-a fundamental unit of soil structure. Spherical aggregates were made with As(V)- or As(III)-bearing, ferrihydrite-coated quartz that was fused with agarose and placed in a cylindrical reactor; advective flow of anoxic solutes was then initiated around the aggregates to examine As release from a dual-pore domain system. To examine the impact of biotic As(V) and Fe(III) reduction, constructed aggregates having As(V)-bearing, ferrihydrite-coated quartz inoculated with sp. ANA-3 were placed in flow-through reactors under anoxic and aerated advective flow. Consistent with desorption from advective columns, As(III) is released to advecting water more prevalently than As(V) within abiotic aggregate systems, indicating a greater lability and concomitant enhanced propensity for transport of As(III) relative to As(V). During reaction with , As release to advecting water was similar between anoxic and aerated systems for the first 20 d; thereafter, the anoxic advecting solutes increased As release relative to the aerated counterpart. With aerated advecting solutes, Fe remained oxidized (or was oxidized) in the aggregate exterior, forming a protective barrier that limited As release to the advective channel. However, anaerobiosis within the aggregate interior, even with aerated advective flow, promotes internal repartitioning of As to the exterior region.


Assuntos
Arsênio , Solo , Arsênio/química , Compostos Férricos/química , Ferro/química , Oxirredução
3.
Environ Microbiol Rep ; 15(5): 417-421, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37150598

RESUMO

The gram-positive soil bacterium, Arthrobacter nicotianae, uses multiple organic acid functional groups to adsorb lanthanides onto its cell surface. At relevant soil pH conditions of 4.0-6.0, many of these functional groups are de-protonated and available for cation sorption and metal immobilization. However, among the plethora of naturally occurring site types, A. nicotianae is shown to possess high-affinity amide and phosphate sites that disproportionately affect lanthanide adsorption to the cell wall. We quantify neodymium (Nd)-selective site types, reporting an amide-Nd stability constant of log10 K = 6.41 ± 0.23 that is comparable to sorption via phosphate-based moieties. These sites are two to three orders of magnitude more selective for Nd than the adsorption of divalent metals to ubiquitous carboxyl-based moieties. This implies the importance of lanthanide biosorption in the context of metal transport in subsurface systems despite trace concentrations of lanthanides found in the natural environment.


Assuntos
Elementos da Série dos Lantanídeos , Solo , Adsorção , Amidas , Bactérias , Fosfatos
4.
Geobiology ; 17(3): 320-329, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30592130

RESUMO

The dissolution of elemental selenium [Se(0)] during chemical weathering is an important step in the global selenium cycle. While microorganisms have been shown to play a key role in selenium dissolution in soils, the mechanisms of microbial selenium solubilization are poorly understood. In this study, we isolated a Bacillus species, designated as strain JG17, that exhibited the ability to dissolve Se(0) under oxic conditions and neutral pH. Growth of JG17 in a defined medium resulted in the production and accumulation of extracellular compounds that mediated Se(0) dissolution. Analysis of the spent medium revealed the presence of extracellular sulfite, sulfide, and thiosulfate. Abiotic Se(0) dissolution experiments with concentrations of sulfite, sulfide, and thiosulfate relevant to our system showed similar extents of selenium solubilization as the spent medium. Together, these results indicate that the solubilization of Se(0) by JG17 occurs via the release of extracellular inorganic sulfur compounds followed by chemical dissolution of Se(0) by the reactive sulfur metabolites. Our findings suggest that the production of reactive sulfur metabolites by soil microorganisms and the formation of soluble selenosulfur complexes can promote selenium mobilization during chemical weathering.


Assuntos
Bacillus/metabolismo , Selênio/metabolismo , Enxofre/metabolismo , Solo/química , Microbiologia do Solo , Solubilidade
5.
Environ Toxicol Chem ; 37(4): 993-1006, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29168891

RESUMO

Bar-built estuaries are unique ecosystems characterized by the presence of a sandbar barrier, which separates the estuary from the ocean for extended periods and can naturally reopen to the ocean with heavy rainfall and freshwater inflows. The physical effects associated with the transition from closed to open state, specifically water mixing and sediment resuspension, often indirectly worsen water quality conditions and are suspected to drive near-annual fish kills at the Pescadero estuary in northern California. The effects of sediment acid-volatile sulfide (AVS) oxidation, specifically oxygen depletion, acidification, and metal release, are believed to aggravate water conditions for fish but remain poorly understood. We performed slurry incubations containing sediment from 4 sites in the Pescadero estuary, representing a gradient from the Pacific Ocean to freshwater tributaries. We measured near-maximum rates of aqueous hydrogen sulfide oxidation, sediment AVS oxidation, sulfate production, and acidification, as well as near-maximum release rates of iron (Fe), manganese (Mn), and zinc (Zn) to the water column. We estimated AVS oxidation rates of 8 to 21 mmol S kg-1 d-1 , which were 3 orders of magnitude higher than aqueous hydrogen sulfide oxidation rates, 6 to 26 µmol S kg-1 d-1 . We suggest that aqueous hydrogen sulfide cannot be responsible for the observed kills because of low concentrations and minimal oxidative effects on pH and metal concentrations. However, the oxidative effects of AVS are potentially severe, decreasing pH to strongly acidic levels and releasing aqueous Fe, Mn, and Zn concentrations up to 11.2 mM, 0.46 mM, and 88 µM, respectively, indicating a potential role in worsening water conditions for fish in the Pescadero estuary. Environ Toxicol Chem 2018;37:993-1006. © 2017 SETAC.


Assuntos
Ácidos/química , Estuários , Sedimentos Geológicos/química , Metais Pesados/análise , Sulfetos/análise , Animais , California , Peixes , Água Doce/química , Geografia , Sulfeto de Hidrogênio/análise , Ferro/análise , Manganês/análise , Oxirredução , Oceano Pacífico , Sulfatos/análise , Fatores de Tempo , Volatilização , Zinco/análise
6.
Life Sci Space Res (Amst) ; 17: 1-14, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29753408

RESUMO

A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions.


Assuntos
Glycine max/crescimento & desenvolvimento , Sistemas de Manutenção da Vida/instrumentação , Solo/química , Voo Espacial , Triticum/crescimento & desenvolvimento , Urina/química , Humanos , Voo Espacial/instrumentação , Gerenciamento de Resíduos/métodos , Recursos Humanos
7.
FEMS Microbiol Ecol ; 58(2): 179-92, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17064260

RESUMO

Nitrate reduction plays a key role in the biogeochemical dynamics and microbial ecology of coastal sediments. Potential rates of nitrate reduction were measured on undisturbed sediment slices from two eutrophic coastal environments using flow-through reactors (FTR). Maximum potential nitrate reduction rates ranged over an order of magnitude, with values of up to 933 nmol cm(-3) h(-1), whereas affinity constants for NO(3) (-) fell mostly between 200 and 600 microM. Homogenized sediment slurries systematically yielded higher rates of nitrate reduction than the FTR experiments. Dentrification was the major nitrate removal pathway in the sediments, although excess ammonium production indicated a contribution of dissimilatory nitrate reduction to ammonium under nitrate-limiting conditions.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Nitratos/metabolismo , Bélgica , Reatores Biológicos , Países Baixos , Mar do Norte , Oxirredução , Compostos de Amônio Quaternário/metabolismo , Água do Mar/microbiologia , Temperatura
8.
Water Res ; 94: 86-102, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26925545

RESUMO

The bar-built Pescadero Estuary in Northern California is a major fish rearing habitat, though recently threatened by near-annual fish kill events, which occur when the estuary transitions from closed to open state. The direct and indirect effects of hydrogen sulfide are suspected to play a role in these mortalities, but the spatial variability of hydrogen sulfide production and its link to fish kills remains poorly understood. Using flow-through reactors containing intact littoral sediment slices, we measured potential sulfate reduction rates, kinetic parameters of microbial sulfate reduction (Rmax, the maximum sulfate reduction rate, and Km, the half-saturation constant for sulfate), potential sulfide precipitation rates, and potential hydrogen sulfide export rates to water at four sites in the closed and open states. At all sites, the Michaelis-Menten kinetic rate equation adequately describes the utilization of sulfate by the complex resident microbial communities. We estimate that 94-96% of hydrogen sulfide produced through sulfate reduction precipitates in the sediment and that only 4-6% is exported to water, suggesting that elevated sulfide concentrations in water, which would affect fish through toxicity and oxygen consumption, cannot be responsible for fish deaths. However, the indirect effects of sulfide precipitates, which chemically deplete, contaminate, and acidify the water column during sediment re-suspension and re-oxidation in the transition from closed to open state, can be implicated in fish mortalities at Pescadero Estuary.


Assuntos
Estuários , Sedimentos Geológicos/química , Sulfatos/química , Sulfetos/química , Poluentes Químicos da Água/química , Animais , California , Precipitação Química , Peixes , Sulfeto de Hidrogênio/química , Cinética , Modelos Químicos , Oxirredução , Análise Espaço-Temporal , Bactérias Redutoras de Enxofre/isolamento & purificação
9.
Front Microbiol ; 3: 45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22375137

RESUMO

Enhanced anthropogenic inputs of nitrogen (N) and sulfur (S) have disturbed their biogeochemical cycling in aquatic and terrestrial ecosystems. The N and S cycles interact with one another through competition for labile forms of organic carbon between nitrate-reducing and sulfate-reducing bacteria. Furthermore, the N and S cycles could interact through nitrate [Formula: see text] reduction coupled to S oxidation, consuming [Formula: see text] and producing sulfate [Formula: see text] The research questions of this study were: (1) what are the environmental factors explaining variability in N and S biogeochemical reaction rates in a wide range of surficial aquatic sediments when [Formula: see text] and [Formula: see text] are present separately or simultaneously, (2) how the N and S cycles could interact through S oxidation coupled to [Formula: see text] reduction, and (3) what is the extent of sulfate reduction inhibition by nitrate, and vice versa. The N and S biogeochemical reaction rates were measured on intact surface sediment slices using flow-through reactors. The two terminal electron acceptors [Formula: see text] and [Formula: see text] were added either separately or simultaneously and [Formula: see text] and [Formula: see text] reduction rates as well as [Formula: see text] reduction linked to S oxidation were determined. We used redundancy analysis, to assess how environmental variables were related to these rates. Our analysis showed that overlying water pH and salinity were two dominant environmental factors that explain 58% of the variance in the N and S biogeochemical reaction rates when [Formula: see text] and [Formula: see text] were both present. When [Formula: see text] and [Formula: see text] were added separately, however, sediment N content in addition to pH and salinity accounted for 62% of total variance of the biogeochemical reaction rates. The [Formula: see text] addition had little effect on [Formula: see text] reduction; neither did the [Formula: see text] addition inhibit [Formula: see text] reduction. The presence of [Formula: see text] led to [Formula: see text] production most likely due to the oxidation of sulfur. Our observations suggest that metal-bound S, instead of free sulfide produced by [Formula: see text] reduction, was responsible for the S oxidation.

10.
Environ Sci Technol ; 44(1): 74-9, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20039736

RESUMO

Within soils, biogeochemical processes controlling elemental cycling are heterogeneously distributed owing, in large part, to the physical complexity of the media. Here we quantify how diffusive mass-transfer limitation at the soil aggregate scale controls the biogeochemical processes governing ferrihydrite reductive dissolution and secondary iron mineral formation. Artificial cm-scale aggregates made of ferrihydrite-coated sand inoculated with iron-reducing bacteria were placed in flow-through reactors, mimicking macro- and microporous soil environments. A reactive transport model was developed to delineate diffusively and advectively controlled regions, identify reaction zones and estimate kinetic parameters. Simulated iron (Fe) breakthrough-curves show good agreement with experimental results for a wide-range of flow rates and input lactate concentrations, with only a limited amount (< or =12%) of Fe lost in the reactor outflow over a 31 day period. Model simulations show substantial intra-aggregate, mm-scale radial variations in the secondary iron phase distributions, reproducing the trends observed experimentally where only limited transformation of ferrihydrite was found near the aggregate surface, whereas extensive formation of goethite/lepidocrocite and minor amounts of magnetite and/or siderite were observed toward the aggregate center. Our study highlights the important control of variations in transport intensities on microbially induced iron transformation at the soil aggregate scale.


Assuntos
Compostos Férricos/química , Modelos Químicos , Solo/análise , Cinética
11.
Appl Environ Microbiol ; 71(12): 8123-31, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332794

RESUMO

Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially, the introduced population was less widely spread at the microscale level than two model indigenous functional communities: the 2,4-dichlorophenoxyacetic acid degraders and the nitrifiers (each at 10(6) CFU g(-1) soil). When the soil was percolated with a substrate metabolizable by P. putida or incubated for 1 month, the microscale distribution of introduced bacteria was modified towards a more widely dispersed distribution. The quantitative data indicate that the microscale spatial distribution of an introduced strain may strongly limit its contacts with the members of an indigenous bacterial community. This could constitute an explanation to the low number of indigenous transconjugants found most of time when a plasmid-donor strain is introduced into soil.


Assuntos
Bactérias/crescimento & desenvolvimento , Pseudomonas putida/fisiologia , Pseudomonas/fisiologia , Microbiologia do Solo , Agricultura , Bactérias/classificação , Meio Ambiente , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Pseudomonas/crescimento & desenvolvimento , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA