Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Phys Chem Chem Phys ; 20(21): 14461-14468, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29785439

RESUMO

Developing optical temperature sensors with a wider range, higher sensitivity and repeatability based on Er3+/Yb3+ doped upconverting phosphors has always been at the forefront of temperature measurement technologies. Here, we report the intense green upconversion luminescence in Er3+/Yb3+ doped δ-Sc4Zr3O12 for the first time and its temperature sensing performance is investigated. The structure of δ-Sc4Zr3O12 is given by Rietveld refinement of XRD data and the site occupancy of Er3+ ions has been determined. Compared with cubic Sc2O3 and ZrO2, under 972 nm excitation, the green emission from Er3+ centers in Sc4Zr3O12 is increased by 59-fold and 264-fold, respectively. By experimental analysis, this enhancement of upconversion luminescence is attributed to the low-symmetrical environment of Er3+, generation of Yb3+ clusters and high internal efficiency of Yb3+ emission in Sc4Zr3O12. In addition, the fluorescence intensity ratio of two green emission bands (2H11/2/4S3/2 → 4I15/2) is studied as a function of temperature ranging from 303 to 793 K in Sc4Zr3O12. The maximum sensitivity observed via calculation is 0.00634 K-1 at 573 K, and the sensitivity is still as high as 0.00534 K-1 at 793 K. The stability of a Sc4Zr3O12 thermometer is also examined via a recycling test. These findings suggest that δ-Sc4Zr3O12 is a promising upconversion host and could achieve high-sensitivity optical temperature sensing with a wide measuring range.

3.
Inorg Chem ; 56(16): 9938-9945, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28796498

RESUMO

Forming solid solutions through cation substitution is an efficient way to improve the luminescence properties of Ce3+ or Eu2+ activated phosphors and even to develop new ones, which is badly needed for phosphor-converted white LEDs. Here, we report new color tunable solid solution phosphors based on Eu2+ activated K2Al2B2O7 as a typical case to demonstrate that, besides crystal field splitting of 5d levels, centroid shift and Stokes shift can be dominant in tuning excitation and emission spectra as well as thermal stability of solid solution phosphors, both of which were previously considered to be negligible. Moreover, a general model involving the inductive effect of neighboring cations is proposed to explain the obvious variations in centroid shift and Stokes shift with cation substitution. Our work is propitious for the construction of more reasonable structure-property relations and thus offers theoretical guidance for designing solid solution phosphors.

4.
Inorg Chem ; 56(8): 4539-4545, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28358516

RESUMO

This paper demonstrates a highly thermally stable and efficient green-emitting Ba2Y5B5O17:Ce3+, Tb3+ phosphor prepared by high-temperature solid-state reaction. The phosphor exhibits a blue emission band of Ce3+ and green emission lines of Tb3+ upon Ce3+ excitation in the near-UV spectral region. The effect of Ce3+ to Tb3+ energy transfer on blue to green emission color tuning and on luminescence thermal stability is studied in the samples codoped with 1% Ce3+ and various concentrations (0-40%) of Tb3+. The green emission of Tb3+ upon Ce3+ excitation at 150 °C can keep, on average, 92% of its intensity at room temperature, with the best one showing no intensity decreasing up to 210 °C for 30% Tb3+. Meanwhile, Ce3+ emission intensity only keeps 42% on average at 150 °C. The high thermal stability of the green emission is attributed to suppression of Ce3+ thermal de-excitation through fast energy transfer to Tb3+, which in the green-emitting excited states is highly thermally stable such that no lifetime shortening is observed with raising temperature to 210 °C. The predominant green emission is observed for Tb3+ concentration of at least 10% due to efficient energy transfer with the transfer efficiency approaching 100% for 40% Tb3+. The internal and external quantum yield of the sample with Tb3+ concentration of 20% can be as high as 76% and 55%, respectively. The green phosphor, thus, shows attractive performance for near-UV-based white-light-emitting diodes applications.

5.
Inorg Chem ; 56(21): 13062-13069, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28991444

RESUMO

Er3+-induced intensity enhancement of ∼2 µm emission is observed in 2 atom % Tm3+ doped Lu2O3 under 782 nm excitation. The maximum enhancement reaches 41.9% with only 0.05 atom % Er3+. Er3+ introduces a new quantum cutting process which is proved to be a Tm3+ → Er3+ → Tm3+ forward-backward energy transfer (FBET) system. The FBET system is observed to work efficiently even at very low Er3+ concentration. Thus, energy loss due to energy migration among Tm3+ ions is suggested to be suppressed by the FBET process. The Tm3+ → Er3+ → Tm3+ FBET system may be a new route to improve the performance of Tm3+ lasers.

6.
Inorg Chem ; 56(3): 1498-1503, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28098986

RESUMO

A high-temperature solid-state method was used to synthesize the Ho3+- and Yb3+-codoped cubic Lu2O3 powders. The crystal structures of the as-prepared powders were characterized by X-ray diffraction. The energy-transfer (ET) phenomenon between Ho3+ ions and Yb3+ ions was verified by the steady-state spectra including visible and near-infrared (NIR) regions. Beyond that, the decay curves were also measured to certify the existence of the ET process. The downconversion phenomena appeared when the samples were excited by 446 nm wavelength corresponding to the transition of Ho3+: 5I8→5G6/5F1. On the basis of the analysis of the relationship between the initial transfer rate of Ho3+: 5F3 level and the Yb3+ doping concentration, it indicates that the ET from 5F3 state of Ho3+ ions to 2F5/2 state of Yb3+ ions is mainly through a two-step ET process, not the long-accepted cooperative ET process. In addition, a 62% ET efficiency can be achieved in Lu2O3: 1% Ho3+/30% Yb3+. Unlike the common situations in which the NIR photons are all emitted by the acceptors Yb3+, the sensitizers Ho3+ also make contributions to the NIR emission upon 446 nm wavelength excitation. Meanwhile, the 5I5→5I8 transition and 5F4/5S2→5I6 transition of Ho3+ as well as the 2F5/2→2F7/2 transition of Yb3+ match well with the optimal spectral response of crystalline silicon solar cells. The current research indicates that Lu2O3: Ho3+/Yb3+ is a promising material to improve conversion efficiency of crystalline silicon solar cell.

7.
Photochem Photobiol Sci ; 15(10): 1282-1288, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27714321

RESUMO

A Prussian blue/carbon dot (PB/CD) nanocomposite was synthesised and used as a visible-light active photocatalyst for the oxidative cyanation of tertiary amines to α-aminonitriles by using NaCN/acetic acid as a cyanide source and H2O2 as an oxidant. The developed photocatalyst afforded high yields of products after 8 h of visible light irradiation at room temperature. The catalyst was recycled and reused several times without any significant loss in its activity.

8.
Inorg Chem ; 55(19): 9736-9741, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27617595

RESUMO

Luminescence property of low-concentration Eu2+-doped SrAlSi4N7:Ce3+ yellow phosphor is reported in this paper. Three optical centers Ce1, Ce2, and Eu2 are observed in the phosphor. Deconvolution of emission spectrum confirms the three centers to be green (530 nm), yellow (580 nm), and red (630 nm), respectively. This property promises considerable improvement of color-rendering property of a white light-emitting diode (wLED). For example, color-rendering index (CRI) of wLED fabricated by combining a blue LED chip and SrAlSi4N7:0.05Ce3+,0.01Eu2+ phosphor reaches 88. A competitive energy transfer process between Ce1-Ce2 and Ce1-Eu2 is confirmed based on Inokuti-Hirayama formula. Ratio of energy transfer rate between Ce1-Ce2 and Ce1-Eu2 (WCe1-Eu2/WCe1-Ce2) is calculated to be 2.0. This result reveals the effect of Eu2+ concentration on quantity of green and red components in SrAlSi4N7:Ce3+,Eu2+ phosphor.

9.
Sensors (Basel) ; 16(10)2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27763533

RESUMO

Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes) leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O) are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM-1·cm-2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

10.
Langmuir ; 31(13): 3926-33, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25781327

RESUMO

Nanodiamonds (NDs) are among the most promising new carbon based materials for biomedical applications, and the simultaneous integration of various functions onto NDs is an urgent necessity. A multifunctional nanodiamond based formulation is proposed here. Our strategy relies on orthogonal surface modification using different dopamine anchors. NDs simultaneously functionalized with triethylene glycol (EG) and azide (-N3) functions were fabricated through a stoichiometrically controlled integration of the dopamine ligands onto the surface of hydroxylated NDs. The presence of EG functionalities rendered NDs soluble in water and biological media, while the -N3 group allowed postsynthetic modification of the NDs using "click" chemistry. As a proof of principle, alkynyl terminated di(amido amine) ligands were linked to these ND particles.


Assuntos
Nanodiamantes/química , Azidas/química , Polietilenoglicóis/química , Propriedades de Superfície
11.
Inorg Chem ; 54(7): 3189-95, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25751730

RESUMO

Novel blue-emitting K2Al2B2O7:Eu(2+) (KAB:Eu(2+)) phosphor was synthesized by solid state reaction. The crystal structural and photoluminescence (PL) properties of KAB:Eu(2+) phosphor, as well as its thermal properties of the photoluminescence, were investigated. The KAB:Eu(2+) phosphor exhibits broad excitation spectra ranging from 230 to 420 nm, and an intense asymmetric blue emission band centered at 450 nm under λex = 325 nm. Two different Eu(2+) emission centers in KAB:Eu(2+) phosphor were confirmed via their fluorescence decay lifetimes. The optimal concentration of Eu(2+) ions in K2-xEuxAl2B2O7 was determined to be x = 0.04 (2 mol %), and the corresponding concentration quenching mechanism was verified to be the electric dipole-dipole interactions. The PL intensity of the nonoptimized KAB:0.04Eu(2+) phosphor was measured to be ∼58% that of the commercial blue-emitting BaMgAl10O17:Eu(2+) phosphor, and this phosphor has high color purity with the CIE coordinate (0.147, 0.051). When heated up to 150 °C, the KAB:0.04Eu(2+) phosphor still has 82% of the initial PL intensity at room temperature, indicating its high thermal stability. These results suggest that the KAB:Eu(2+) is a promising candidate as a blue-emitting n-UV convertible phosphor for application in white light emitting diodes.

12.
Inorg Chem ; 54(8): 3921-8, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25848860

RESUMO

Nanosized Yb(3+) and Er(3+) co-doped ß-NaYF4 cores coated with multiple ß-NaYF4 shell layers were synthesized by a solvothermal process. X-ray diffraction and scanning electron microscopy were used to characterize the crystal structure and morphology of the materials. The visible and near-infrared spectra as well as the decay curves were also measured. A 40-fold intensity increase for the green upconversion and a 34-fold intensity increase for the red upconversion were observed as the cores are coated with three shell layers. The origin of the upconversion enhancement was studied on the basis of photoluminescence spectra and decay times. Our results indicate that the upconversion enhancement in the sandwiched structure mainly originates from the suppression of de-excitation of Yb(3+) ions. We also explored the population of the Er(3+4)F9/2 level. The results reveal that energy transfer from the lower intermediate Er(3+4)I13/2 level is dominant for populating the Er(3+4)F9/2 level when the nanocrystal size is relatively small; however, with increasing nanocrystal size, the contribution of the green emitting Er(3+4)S3/2 level for populating the Er(3+4)F9/2 level, which mainly comes from the cross relaxation energy transfer from Er(3+) ions to Yb(3+) ions followed by energy back transfer within the same Er(3+)-Yb(3+) pair, becomes more and more important. Moreover, this mechanism takes place only in the nearest Er(3+)-Yb(3+) pairs. This population route is in good agreement with that in nanomaterials and bulk materials.

13.
Langmuir ; 29(41): 12688-96, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24083658

RESUMO

In this Article, we report on the encapsulation of decyl-modified silicon nanoparticles (decyl-SiNPs) into ∼80 nm lipid nanocapsules (LNCs). The decyl-SiNPs were produced by thermal hydrosilylation of hydride-terminated SiNPs (H-SiNPs) liberated from porous silicon. Various techniques, including Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), UV-vis absorption, dynamic light scattering (DLS), and photoluminescence (PL), were used to characterize their size, shape, colloidal, and optical properties. The results indicate that these nanocapsules feature controllable size, good dispersity, high loading rate of SiNPs, colloidal stability in various media, and bright PL. The PL of decyl-SiNPs loaded LNCs was stable upon heating to 80 °C, but was sensitive to basic solutions due to proton-gated emission of the SiNPs arranged at the LNCs interface between the oil phase and the hydrophilic polyethylene glycol moieties of the surfactant. These luminescent nanocapsules are therefore promising candidates as cellular probes for fluorescence imaging. In addition, it was found that TEM imaging of small-sized decyl-SiNPs could be greatly improved by preliminary negative staining of TEM grids with phosphotungstic acid.


Assuntos
Lipídeos/química , Nanopartículas/química , Silício/química , Hidrodinâmica , Tamanho da Partícula , Porosidade , Propriedades de Superfície
14.
Dalton Trans ; 48(16): 5263-5270, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30942227

RESUMO

In Ce3+ activated SrLn2O4 type phosphors (Ln = Y, Lu, Sc, etc.) only one Ce3+ center was previously reported to show a blue emission band. In this paper, we report the observation of a second Ce3+ center in SrLu2O4:Ce3+. The new center shows a red emission band peaking at 600 nm with an excitation band at 485 nm. We attributed the new center (Ce(ii)) to the substitution of the Lu3+ site and the original blue center (Ce(i)) to the substitution of the Sr2+ site. Spectroscopy studies indicate that Ce(i) centers are preferentially formed at a low doping concentration and the number ratio of Ce(i)/Ce(ii) decreases with increasing Ce3+ concentration until beyond 0.002. The fluorescence lifetimes of the two centers were measured for various doping concentrations. Energy transfer from Ce(i) to Ce(ii) was observed. It was found that the emission intensity of Ce(ii) centers reduces much faster than that of Ce(i) with increasing temperature from 83 K up to 350 K, implying their potential application in temperature sensing based on their temperature dependent intensity ratios. A relative sensing sensitivity as high as 2.28% K-1 at 283 K was achieved.

15.
Nanoscale ; 10(47): 22237-22251, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30462115

RESUMO

The most common yellow phosphor for wLEDs, Y3Al5O12:Ce3+ (YAG:Ce3+), suffers from a deficiency of red in its spectral content of light. In this paper, a new strategy is provided to tailor the Ce3+ spectral profile through surface-located dye molecules of ATTO-Rho101, which feature intense, broad absorption in the green-yellow spectral region of Ce3+ emission as well as bright red emission. Sphere-shaped and highly dispersed micrometer and nanometer-sized YAG:Ce3+ (micro/nano-YAG:Ce3+) was synthesized through a modified solvothermal method. Surface SiO2 coating and simultaneous dye embedding were performed on the solvothermally derived YAG:Ce3+, heat-treated micro-YAG:Ce3+ and commercial phosphors. Efficient radiative transfer/reabsorption from Ce3+ in the inner core of YAG to the dye molecules in the SiO2 outer shell, irrespective of the size of the phosphors, was demonstrated in the accumulated YAG:Ce3+@SiO2 + dye powder upon blue light excitation; this enhanced its red emission. Fluorescence microscopy was demonstrated to be a powerful tool to identify the reabsorption phenomenon of the powdered materials. Packaging the heat-treated micro-YAG:Ce3+@SiO2 + dye phosphors on blue LED chips yielded a warm wLED (Ra∼ 93), but an Ra of only ∼79 was obtained for the wLED with commercial YAG:Ce3+@(SiO2 + dye)5 due to the low concentration of phosphors dispersed in the epoxy resin and the resulting decreased reabsorption by dye molecules. Surface-protonated amine species were found to induce Ce3+→ Ce4+ oxidation upon activation by heating or photoirradiation and then quench the photoluminescence (PL) of micro-YAG:Ce3+ even after surface modification by SiO2, YAG or being embedded in an epoxy resin matrix. High calcination temperatures greatly improved the PL stability of micro-YAG:Ce3+ through the removal of surface-capped species. The dye in the silica matrix showed high stability against heating and irradiation due to the so-called "caging effects"; however, decreased photo-stability was found in commercial YAG:Ce3+@(SiO2 + dye)5 due to the incomplete and/or loose SiO2 layer grown during multiple surface modifications.

16.
Nanoscale ; 10(48): 23198, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30499580

RESUMO

Correction for 'Dye-embedded YAG:Ce3+@SiO2 composite phosphors toward warm wLEDs through radiative energy transfer: preparation, characterization and luminescence properties' by Guo-Hui Pan, Jiahua Zhang et al., Nanoscale, 2018, DOI: 10.1039/c8nr07360k.

17.
Sci Rep ; 8(1): 10463, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29993016

RESUMO

Blue-emitting phosphors for near ultraviolet (NUV) based tri-color RGB phosphor blend converted white light emitting diodes (LEDs) have been extensively investigated in the past few years. LED chip peaked near 400 nm is the most efficient among the NUV chips currently. However, most of blue phosphors show inefficient excitation around 400 nm. Herein, a novel blue phosphor SrLu2O4:Ce3+ matching well with near 400 nm chip and showing high thermal stability has been developed. The photoluminescence spectrum presents a broad emission band peaking at 460 nm with a bandwidth of nearly 90 nm. By optimizing the Ce3+ concentration, an internal quantum efficiency (IQE) as high as 76% was achieved. Furthermore, 86% of the room-temperature emission intensity is still maintained at 150 °C, indicating a good thermal stability and practicality. A series of white LEDs were fabricated based on 405 nm chips coated with a blend of the new blue phosphor with the commercial yellow and red phosphors. High color rendering indexes (≥90) were achieved while the correlated color temperature was tuneable in the range of 3094 to 8990 K. These results suggest that SrLu2O4:Ce3+ can be utilized as a blue-emitting phosphor in NUV based white LEDs.

18.
Dalton Trans ; 47(46): 16723-16728, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30426995

RESUMO

The Y3Si6N11:Ce3+ yellow phosphor shows a well-known ∼150 nm broad emission band, exhibiting a potential application in UV or blue based white LEDs. We report the observation of two Ce3+ emitting centers, the superposition of which forms the broad emission band. One center has a green emission band peaked at 539 nm (Ce1) with the first excitation band at 420 nm. The other has a red emission band peaked at 600 nm (Ce2) with the first excitation band at 485 nm. The two Ce3+ centers are assigned to the substitution for two Y sites in Y3Si6N11. It was found that the Ce2 emission intensity is continuously enhanced relative to that of Ce1 with an increasing Ce3+ concentration, thus leading to a redshift of the broadband. Meanwhile, a more notable fluorescence lifetime shortening of Ce1 compared to Ce2 with an increasing Ce3+ concentration was observed. These results suggest the occurrence of energy transfer from Ce1 to Ce2. The temperature-dependent luminescence intensity of Y3Si6N11:Ce3+ was also studied in the range of 93 to 473 K.

19.
J Hazard Mater ; 304: 441-7, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26610097

RESUMO

We report an efficient visible light-induced reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) by direct illumination of an aqueous solution of potassium dichromate (K2Cr2O7) in the presence of hydrogenated silicon nanowires (H-SiNWs) or silicon nanowires decorated with copper nanoparticles (Cu NPs-SiNWs) as photocatalyst. The SiNW arrays investigated in this study were prepared by chemical etching of crystalline silicon in HF/AgNO3 aqueous solution. The Cu NPs were deposited on SiNW arrays via electroless deposition technique. Visible light irradiation of an aqueous solution of K2Cr2O7 (10(-4)M) in presence of H-SiNWs showed that these substrates were not efficient for Cr(VI) reduction. The reduction efficiency achieved was less than 10% after 120 min irradiation at λ>420 nm. Addition of organic acids such as citric or adipic acid in the solution accelerated Cr(VI) reduction in a concentration-dependent manner. Interestingly, Cu NPs-SiNWs was found to be a very efficient interface for the reduction of Cr(VI) to Cr(III) in absence of organic acids. Almost a full reduction of Cr(VI) was achieved by direct visible light irradiation for 140 min using this photocatalyst.

20.
Biosens Bioelectron ; 85: 807-813, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288713

RESUMO

In this study, a new matrix based on a molybdenum disulfide-reduced graphene oxide hybrid (MoS2-rGO) was prepared and characterized. Modification of a glassy carbon electrode (GCE) with MoS2-rGO (MG) using drop casting allowed for the selective analysis of folic acid in the presence of a variety of interference species with a limit of detection of 10nM, a linear range between 0.01µM and 100µM with a sensitivity of 14µAµM(-1). In addition, the analytical performance of the proposed sensor was successfully conducted for the determination of folic acid in human serum samples, making MG-GC electrodes promising interfaces for bio-electrochemical applications.


Assuntos
Técnicas Eletroquímicas/métodos , Ácido Fólico/sangue , Grafite/química , Nanoestruturas/química , Óxidos/química , Técnicas Biossensoriais/métodos , Dissulfetos/química , Eletrodos , Humanos , Limite de Detecção , Molibdênio/química , Nanoestruturas/ultraestrutura , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA