Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(17): 7198-7205, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34406019

RESUMO

Z phase is one of the three basic units by which the Frank-Kasper (F-K) phases are generally assembled. Compared to the other two basic units, that is, A15 and C15 structures, the Z structure is rarely experimentally observed because of a relatively large volume ratio among the constituents to inhibit its formation. Moreover, the discovered Z structures are generally the three-dimensional ordered Gibbs bulk phases to conform to their thermodynamic stability. Here, we confirmed the existence of a metastable two-dimensional F-K Z phase that has only one unit-cell height in the crystallography in a model Mg-Sm-Zn system, using atomic-scale scanning transmission electron microscopy combined with the first-principles calculations. Self-adapted atomic shuffling can convert the simple hexagonal close-packed structure to the topologically close-packed F-K Z phase. This finding provides new insight into understanding the formation mechanism and clustering behavior of the F-K phases and even quasicrystals in general condensed matters.


Assuntos
Cristalografia
2.
Nano Lett ; 21(22): 9642-9650, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34757745

RESUMO

Twinning is a common deformation mechanism in metals, and twin boundary (TB) segregation of impurities/solutes plays an important role in the performances of alloys such as thermostability, mobility, and even strengthening. The occurrence of such segregation phenomena is generally believed as a one-layer coverage of solutes alternately distributed at extension/compression sites, in an orderly, continuous manner. However, in the Mn-free and Mn-containing Mg-Nd model systems, we reported unexpected three- and five-layered discontinuous segregation patterns of the coherent {101̅1} TBs, and not all the extension sites occupied by solutes larger in size than Mg, and even some larger sized solutes taking the compression sites. Nd/Mn solutes selectively segregate at substitutional sites and thus to generate two new types of ordered two-dimensional TB superstructures or complexions. These findings refresh the understanding of solute segregation in the perfect coherent TBs and provide a meaningful theoretical guidance for designing materials via targeted TB segregation.


Assuntos
Ligas , Ligas/química
3.
Nano Lett ; 21(7): 2870-2875, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33755476

RESUMO

Interfacial segregation is ubiquitous in mulit-component polycrystalline materials and plays a decisive role in material properties. So far, the discovered solute segregation patterns at special high-symmetry interfaces are usually located at the boundary lines or are distributed symmetrically at the boundaries. Here, in a model Mg-Nd-Mn alloy, we confirm that elastic strain minimization facilitated nonsymmetrical segregation of solutes in four types of linear tilt grain boundaries (TGBs) to generate ordered interfacial superstructures. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy observations indicate that the solutes selectively segregate at substitutional sites at the linear TGBs separated by periodic misfit dislocations to form such two-dimensional planar structures. These findings are totally different from the classical McLean-type segregation which has assumed the monolayer or submonolayer coverage of a grain boundary and refresh understanding on strain-driven interface segregation behaviors.

4.
Phys Rev Lett ; 120(8): 085701, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543011

RESUMO

All of the AB_{2} Laves phases discovered so far satisfy the general crystalline structure characteristic of translational symmetry; however, we report here a new structured Laves phase directly precipitated in an aged Mg-In-Ca alloy by using aberration-corrected scanning transmission electron microscopy. The nanoprecipitate is determined to be a (Mg,In)_{2}Ca phase, which has a C14 Laves structure (hcp, space group: P6_{3}/mmc, a=6.25 Å, c=10.31 Å) but without any translational symmetry on the (0001)_{p} basal plane. The (Mg,In)_{2}Ca Laves phase contains two separate unit cells promoting the formation of five tiling patterns. The bonding of these patterns leads to the generation of the present Laves phase, followed by the Penrose geometrical rule. The orientation relationship between the Laves precipitate and Mg matrix is (0001)_{p}//(0001)_{α} and [11[over ¯]00]_{p}//[112[over ¯]0]_{α}. More specifically, in contrast to the traditional view that the third element would orderly replace other atoms in a manner of layer by layer on the close-packed (0001)_{L} plane, the In atoms here have orderly occupied certain position of Mg atomic columns along the [0001]_{L} zone axis. The finding would be interesting and important for understanding the formation mechanism of Laves phases, and even atom stacking behavior in condensed matter.

5.
Materials (Basel) ; 12(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394761

RESUMO

Regulating precipitates is still an important issue in the development of high-strength Mg alloys, due to it determining the precipitation hardening effect. Cold deformation, as a simple and low-cost method, can remarkably influence the precipitate features. It is found that pre-cold deformation before aging can be utilized to enhance the precipitation hardening effect of Mg alloys. Moreover, post-deformation after aging could be an effective method to regulate precipitation orientation. In this review, recent research on the regulation of precipitation behavior by cold deformation in Mg-Al, Mg-Zn, and Mg-RE (RE: rare-earth elements) alloy systems was critically reviewed. The changes in precipitate features and mechanical properties of peak-aged Mg alloys via cold deformation were summarized. The corresponding strengthening mechanisms were also discussed. Finally, further research directions in this field were proposed.

6.
J Phys Chem Lett ; 9(15): 4373-4378, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30028626

RESUMO

Five-fold symmetry was forbidden for the periodic crystals until the discovery of the Al-Mn icosahedral quasicrystal. We report a kind of precipitated rod-shaped nanophase containing five-fold symmetry but not belonging to any crystals or quasicrystals discovered so far. These metastable nanodomain phases, which precipitated in Mg-6Zn alloy during isothermal aging at 200 °C, contain two separate unit cells in the 2D plane perpendicular to the five-fold axis but with periodic atom arrangement along the five-fold axis, that is, 72° rhombus structure and 72° equilateral hexagon structure. The self-assembly of two unit cells under some geometrical constraints into a nanodomain contains the 2D five-fold, C14, and C15 structures. This finding confirms the existence of solid matters in a special structure between the crystals and quasicrystals, and it is expected to provide a way to understand the atomic arrangement and stacking behavior in condensed matters.

7.
IUCrJ ; 5(Pt 6): 823-829, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443366

RESUMO

This paper reports a new structured prismatic platelet, self-assembled by an ellipse-like quasi-unit cell, precipitated in Mg-In-Yb and Mg-In-Ca ternary alloys and aged isothermally at 200°C using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with density functional theory computations. The ordered stacking of solute atoms along the [0001]α direction based on elliptically shaped self-adapted clustering leads to the generation of the quasi-unit cell. The bonding of these ellipse-like quasi-unit-cell rods by the Mg atomic columns along the 〈〉α directions formed a two-dimensional planar structure, which has three variants with a {}α habit plane and full coherence with the α-Mg matrix. This finding is important for understanding the clustering and stacking behaviors of solute atoms in condensed matter, and is expected to guide the future design of novel high-strength Mg alloys strengthened by such high-density prismatic platelets.

8.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 2): 1081-1088, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27772708

RESUMO

In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg17Sr2 phases, and the content of Mg17Sr2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application.


Assuntos
Ligas/farmacologia , Fenômenos Mecânicos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Corrosão , Eletroquímica , Humanos , Concentração de Íons de Hidrogênio , Peso Molecular , Soluções , Resistência à Tração/efeitos dos fármacos , Difração de Raios X
9.
Materials (Basel) ; 10(3)2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28772638

RESUMO

In this study, AZ91 magnesium alloy rods were used to investigate the effects of torsion deformation on microstructure and subsequent aging behavior. Extruded AZ91 rod has a uniform microstructure and typical fiber texture. Torsion deformation can generate a gradient microstructure on the cross-section of the rod. After torsion, from the center to the edge in the cross-section of the rod, both stored dislocations and area fraction of {10-12} twins gradually increase, and the basal pole of the texture tends to rotate in the ED direction. Direct aging usually generates coarse discontinuous precipitates and fine continuous precipitates simultaneously. Both twin structures and dislocations via torsion deformation can be effective microstructures for the nucleation of continuous precipitates during subsequent aging. Thus, aging after torsion can promote continuous precipitation and generate gradient precipitation characteristics. Both aging treatment and torsion deformation can reduce yield asymmetry, and torsion deformation enhances the aging hardening effect by promoting continuous precipitation. Therefore, combined use of torsion deformation and aging treatment can effectively enhance the yield strength and almost eliminate the yield asymmetry of the present extruded AZ91 rod. Finally, the relevant mechanisms are discussed.

10.
Mater Sci Eng C Mater Biol Appl ; 54: 245-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046288

RESUMO

In this study, biodegradable Mg-Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg-1Sn alloy was almost equiaxed grain, while the Mg-Sn alloys with higher Sn content (Sn≥3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg-Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg2Sn phase, and the amount of Mg2Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg-Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg-1Sn and Mg-3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg-1Sn and Mg-3Sn alloys were promising to be used as biodegradable implants.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Magnésio/química , Estanho/química , Ligas/química , Linhagem Celular Tumoral , Corrosão , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA