Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087265

RESUMO

Epigenetic changes caused by methylcytosine modification participate in gene regulation and transposable element (TE) repression, resulting in phenotypic variation. Although the effects of DNA methylation and TE repression on flower, fruit, seed coat, and leaf pigmentation have been investigated, little is known about the relationship between methylation and flower color chimerism. In this study, we used a comparative methylomic⁻transcriptomic approach to explore the molecular mechanism responsible for chimeric flowers in Prunus mume "Danban Tiaozhi". High-performance liquid chromatography-electrospray ionization mass spectrometry revealed that the variation in white (WT) and red (RT) petal tissues in this species is directly due to the accumulation of anthocyanins, i.e., cyanidin 3,5-O-diglucoside, cyanidin 3-O-glucoside, and peonidin 3-O-glucoside. We next mapped the first-ever generated methylomes of P. mume, and found that 11.29⁻14.83% of the genomic cytosine sites were methylated. We also determined that gene expression was negatively correlated with methylcytosine level in general, and uncovered significant epigenetic variation between WT and RT. Furthermore, we detected differentially methylated regions (DMRs) and DMR-related genes between WT and RT, and concluded that many of these genes, including differentially expressed genes (DEGs) and transcription factor genes, are critical participants in the anthocyanin regulatory pathway. Importantly, some of the associated DEGs harbored TE insertions that were also modified by methylcytosine. The above evidence suggest that flower color chimerism in P. mume is induced by the DNA methylation of critical genes and TEs.


Assuntos
Metilação de DNA , Flores/genética , Pigmentação , Prunus/genética , Transcriptoma , Quimerismo , Elementos de DNA Transponíveis , Epigênese Genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Prunus/fisiologia , Árvores/genética , Árvores/fisiologia
2.
Cytogenet Genome Res ; 149(3): 226-235, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27498385

RESUMO

To elucidate the evolutionary dynamics of the location and number of rDNA loci in the process of polyploidization in the genus Rosa, we examined 45S rDNA sites in the chromosomes of 6 modern rose cultivars (R. hybrida), 5 R. rugosa cultivars, and 20 hybrid progenies by fluorescence in situ hybridization. Variation in the number of rDNA sites in parents and their interspecific hybrids was detected. As expected, 4 rDNA sites were observed in the genomes of 4 modern rose cultivars, while 3 hybridization sites were observed in the 2 others. Two expected rDNA sites were found in 2 R. rugosa cultivars, while in the other 3 R. rugosa cultivars 4 sites were present. Among the 20 R. hybrida × R. rugosa offspring, 13 carried the expected number of rDNA sites, and 1 had 6 hybridization sites, which exceeded the expected number by far. The other 6 offspring had either 2 or 3 hybridization sites, which was less than expected. Differences in the number of rDNA loci were observed in interspecific offspring, indicating that rDNA loci exhibit instability after distant hybridization events. Abnormal chromosome pairing may be the main factor explaining the variation in rDNA sites during polyploidization.


Assuntos
Cromossomos de Plantas/genética , DNA Ribossômico/genética , Hibridização Genética , Hibridização in Situ Fluorescente , RNA Ribossômico/genética , Rosa/classificação , Rosa/genética , Evolução Molecular , Frutas , Germinação , Metáfase , Poliploidia
3.
Appl Plant Sci ; 1(2)2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25202512

RESUMO

PREMISE OF THE STUDY: Microsatellite markers were developed and characterized to analyze genetic diversity within Lagerstroemia cultivars and related species. • METHODS AND RESULTS: Using simple sequence repeat (SSR)-enriched libraries, 11 species-specific polymorphic genomic SSRs were developed from L. indica 'Hong Die Fei Wu'. All primers were tested on 48 L. indica individuals from China, the United States, and France. The primers amplified four to 12 alleles per locus, including di-, tri-, and tetranucleotide repeats. Observed and expected heterozygosities ranged from 0.1875 to 0.7609 and 0.2836 to 0.8385, respectively. The primers were also highly cross-transferrable to L. subcostata, L. limii, L. fauriei, L. caudata, and L. speciosa. • CONCLUSIONS: The new primers will enlarge the bank of SSRs available to genetic research of Lagerstroemia. These SSR markers will facilitate population genetics and molecular marker-assisted selection of L. indica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA