Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552612

RESUMO

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Assuntos
Chlamydomonas , Cílios , Chlamydomonas/citologia , Cílios/química , Cílios/ultraestrutura , Flagelos , Polissacarídeos , Proteínas
2.
Cell ; 185(25): 4788-4800.e13, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36413996

RESUMO

The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid ß-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.


Assuntos
Proteínas de Algas , Chlamydomonas , Cloroplastos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Membranas Intracelulares/metabolismo , Transporte Proteico , Chlamydomonas/química , Chlamydomonas/citologia , Complexos Multiproteicos/metabolismo , Proteínas de Algas/metabolismo
3.
J Cell Sci ; 137(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853670

RESUMO

Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.


Assuntos
Chlamydomonas reinhardtii , Cílios , Dineínas , Flagelos , Cinesinas , Proteômica , Cílios/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Proteômica/métodos , Cinesinas/metabolismo , Cinesinas/genética , Dineínas/metabolismo , Flagelos/metabolismo , Transporte Biológico
4.
Plant J ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963727

RESUMO

Chlamydomonas reinhardtii, a unicellular green alga, has been widely used as a model organism for studies of algal, plant and ciliary biology. The generation of targeted amino acid mutations is often necessary, and this can be achieved using CRISPR/Cas9 induced homology-directed repair to install genomic modifications from exogenous donor DNA. Due to the low gene editing efficiency, the technical challenge lies in identifying the mutant cells. Direct sequencing is not practical, and pre-screening is required. Here, we report a strategy for generating and screening for amino acid point mutations using the CRISPR/Cas9 gene editing system. The strategy is based on designing donor DNA using codon degeneracy, which enables the design of specific primers to facilitate mutant screening by PCR. An in vitro assembled RNP complex, along with a dsDNA donor and an antibiotic resistance marker, was electroporated into wild-type cells, followed by PCR screening. To demonstrate this principle, we have generated the E102K mutation in centrin and the K40R mutation in α-tubulin. The editing efficiencies at the target sites for Centrin, TUA1, TUA2 were 4, 24 and 8% respectively, based on PCR screening. More than 80% of the mutants with the expected size of PCR products were precisely edited, as revealed by DNA sequencing. Subsequently, the precision-edited mutants were biochemically verified. The introduction of codon degeneracy did not affect the gene expression of centrin and α-tubulins. Thus, this approach can be used to facilitate the identification of point mutations, especially in genes with low editing rates.

5.
EMBO J ; 40(5): e105781, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368450

RESUMO

The intraflagellar transport (IFT) machinery consists of the anterograde motor kinesin-II, the retrograde motor IFT dynein, and the IFT-A and -B complexes. However, the interaction among IFT motors and IFT complexes during IFT remains elusive. Here, we show that the IFT-B protein IFT54 interacts with both kinesin-II and IFT dynein and regulates anterograde IFT. Deletion of residues 342-356 of Chlamydomonas IFT54 resulted in diminished anterograde traffic of IFT and accumulation of IFT motors and complexes in the proximal region of cilia. IFT54 directly interacted with kinesin-II and this interaction was strengthened for the IFT54Δ342-356 mutant in vitro and in vivo. The deletion of residues 261-275 of IFT54 reduced ciliary entry and anterograde traffic of IFT dynein with accumulation of IFT complexes near the ciliary tip. IFT54 directly interacted with IFT dynein subunit D1bLIC, and deletion of residues 261-275 reduced this interaction. The interactions between IFT54 and the IFT motors were also observed in mammalian cells. Our data indicate a central role for IFT54 in binding the IFT motors during anterograde IFT.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas/fisiologia , Cílios/fisiologia , Dineínas/metabolismo , Flagelos/fisiologia , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Algas/genética , Dineínas/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética
6.
PLoS Genet ; 18(8): e1010374, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026524

RESUMO

Assembly of dynein arms requires cytoplasmic processes which are mediated by dynein preassembly factors (DNAAFs). CFAP298, which is conserved in organisms with motile cilia, is required for assembly of dynein arms but with obscure mechanisms. Here, we show that FBB18, a Chlamydomonas homologue of CFAP298, localizes to the cytoplasm and functions in folding/stabilization of almost all axonemal dyneins at the early steps of dynein preassembly. Mutation of FBB18 causes no or short cilia accompanied with partial loss of both outer and inner dynein arms. Comparative proteomics using 15N labeling suggests partial degradation of almost all axonemal dynein heavy chains (DHCs). A mutant mimicking a patient variant induces particular loss of DHCα. FBB18 associates with 9 DNAAFs and 14 out of 15 dynein HCs but not with IC1/IC2. FBB18 interacts with RuvBL1/2, components of the HSP90 co-chaperone R2TP complex but not the holo-R2TP complex. Further analysis suggests simultaneous formation of multiple DNAAF complexes involves dynein folding/stability and thus provides new insights into axonemal dynein preassembly.


Assuntos
Dineínas do Axonema , Chlamydomonas , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/genética , Axonema/metabolismo , Chlamydomonas/metabolismo , Cílios/genética , Cílios/metabolismo , Dineínas/metabolismo , Flagelos/genética , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
7.
Anal Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960896

RESUMO

Microalgae metabolite analysis is fundamental for the rational design of metabolic engineering strategies for the biosynthesis of high-value products. Mass spectrometry (MS) has been utilized for single-cell microalgae analysis. However, limitations in the detection throughput and polarities of detectable substances make it difficult to realize high-throughput screening of high-performance microalgae. Herein, a plasma-assisted label-free mass cytometry, named as PACyESI-MS, was proposed combining the advantages of orthogonal hybrid ionization and high-throughput MS analysis, which realized rapid metabolite detection of single microalgae. The cell detection throughput of PACyESI-MS was up to 52 cells/min. Dozens of the critical primary and secondary metabolites within single microalgae were detected simultaneously, including pigments, lipids, and energy metabolites. Furthermore, metabolite changes of Chlamydomonas reinhardtii and Haematococcus pluvialis under nitrogen deficiency stress were studied. Discrimination of Chlamydomonas under different nutrient conditions was realized using single-cell metabolite profiles obtained by PACyESI-MS. The relationships between the accumulation of bioactive astaxanthin and changes in functional primary metabolites of Haematococcus were investigated. It was demonstrated that PACyESI-MS can detect the flexible change of metabolites in single microalgae cells under different nutritional conditions and during the synthesis of high-value products, which is expected to become an important tool for the design of metabolic engineering-based high-performance microalgae factories.

8.
PLoS Genet ; 16(3): e1008561, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32134924

RESUMO

Intraflagellar transport (IFT) is required for ciliary assembly and maintenance. While disruption of IFT may trigger ciliary disassembly, we show here that IFT mediated transport of a CDK-like kinase ensures proper ciliary disassembly. Mutations in flagellar shortening 2 (FLS2), encoding a CDK-like kinase, lead to retardation of cilia resorption and delay of cell cycle progression. Stimulation for ciliary disassembly induces gradual dephosphorylation of FLS2 accompanied with gradual inactivation. Loss of FLS2 or its kinase activity induces early onset of kinesin13 phosphorylation in cilia. FLS2 is predominantly localized in the cell body, however, it is transported to cilia upon induction of ciliary disassembly. FLS2 directly interacts with IFT70 and loss of this interaction inhibits its ciliary transport, leading to dysregulation of kinesin13 phosphorylation and retardation of ciliary disassembly. Thus, this work demonstrates that IFT plays active roles in controlling proper ciliary disassembly by transporting a protein kinase to cilia to regulate a microtubule depolymerizer.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteína Quinase CDC2/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Transporte Biológico/fisiologia , Ciclo Celular/fisiologia , Flagelos/metabolismo , Fosforilação/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/fisiologia
9.
Anal Chem ; 92(14): 10138-10144, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32568528

RESUMO

Single-cell metabolite analysis plays an important role in biological study. While mass spectrometry is a powerful tool for identification and quantitation of metabolites, the low absolute analyte amounts in single cell and difficulty in sampling represent significant challenges in single cell analysis. In this study, we developed an effective method with a simple sampling procedure for analyzing single cells. A single cell was driven to a capillary tip through electro-migration, followed by releasing the cell contents through electroporation, into a sealed small volume (∼1.5 pL) to prevent dilution. Subsequent mass spectrometry analysis was performed directly with nanoelectrospray ionization. This method was applied for analyzing a variety of cells and monitoring the metabolic changes in response to perturbed cell culturing conditions. This method opens a new avenue for easy and rapid analysis of single cells with high sensitivity.


Assuntos
Chlamydomonas reinhardtii/citologia , Euglena/citologia , Microalgas/citologia , Saccharomyces cerevisiae/citologia , Scenedesmus/citologia , Análise de Célula Única , Movimento Celular , Chlamydomonas reinhardtii/metabolismo , Eletroporação , Euglena/metabolismo , Espectrometria de Massas , Microalgas/metabolismo , Saccharomyces cerevisiae/metabolismo , Scenedesmus/metabolismo
10.
FASEB J ; 33(5): 6431-6441, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794426

RESUMO

Members of the MAPK superfamily are known as key regulators of ciliogenesis. Long flagellar (LF) 4, a MAPK-related kinase in Chlamydomonas, is the first kinase that was implicated in ciliary assembly and length. However, little is known about its cellular properties, regulation, and molecular functions. LF4 is localized both in the flagella and cell body with enrichment at the 2 basal bodies, shown by super-resolution microscopy. LF4 is constitutively phosphorylated at T159 at the kinase activation loop and remains at the basal bodies during flagellar assembly. Gene mutations that affect the kinase activity or T159 phosphorylation alter the localization of LF4 at the basal bodies, and the mutants fail to rescue lf4-3, a null mutant. LF4 does not affect the velocities of intraflagellar transport (IFT). However, LF4 null mutation induces accumulation of IFT proteins in the flagellum and reduces the phosphorylation of the kinesin-II subunit FLA8/KIF3B, indicating that LF4 negatively regulates IFT entry. Furthermore, LF2, a cell cycle-related kinase, and LF3, a novel protein, are required for LF4 phosphorylation. Our study demonstrates that LF4 is likely a constitutively active kinase that is regulated by LF2 and regulates IFT entry at the basal bodies to control flagellar assembly and length.-Wang, Y., Ren, Y., Pan, J. Regulation of flagellar assembly and length in Chlamydomonas by LF4, a MAPK-related kinase.


Assuntos
Chlamydomonas/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flagelos/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chlamydomonas/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Flagelos/genética , Fosforilação , Proteínas de Plantas/genética
11.
PLoS Genet ; 13(2): e1006627, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28207750

RESUMO

Intraflagellar transport (IFT) particles or trains are composed of IFT-A and IFT-B complexes. To assess the working mechanism of the IFT-A complex in IFT and ciliogenesis, we have analyzed ift43 mutants of Chlamydomnonas in conjunction with mutants of the other IFT-A subunits. An ift43 null mutant or a mutant with a partial deletion of the IFT43 conserved domain has no or short flagella. The mutants accumulate not only IFT-B but also IFT-Ain the short flagella, which is in contrast to an ift140 null mutant. The IFT43 conserved domain is necessary and sufficient for the function of IFT43. IFT43 directly interacts with IFT121 and loss of IFT43 results in instability of IFT-A. A construct with a partial deletion of the IFT43 conserved domain is sufficient to rescue the instability phenotype of IFT-A, but results in diminishing of IFT-A at the peri-basal body region. We have further provided evidence for the direct interactions within the IFT-A complex and shown that the integrity of IFT-A is important for its stability and cellular localization. Finally, we show that both IFT43 and IFT140 are involved in mobilizing ciliary precursors from the cytoplasmic pool during flagellar regeneration, suggesting a novel role of IFT-A in transporting ciliary components in the cytoplasm to the peri-basal body region.


Assuntos
Proteínas de Algas/genética , Proteínas de Transporte/genética , Chlamydomonas reinhardtii/genética , Cílios/genética , Flagelos/genética , Transporte Biológico/genética , Proteínas de Transporte/metabolismo , Chlamydomonas reinhardtii/metabolismo , Citoplasma/genética , Flagelos/metabolismo , Complexos Multiproteicos/genética , Fenótipo , Ligação Proteica , Deleção de Sequência
12.
FASEB J ; 32(7): 3689-3699, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29401628

RESUMO

Calcium has been implicated in the motility, assembly, disassembly, and deflagellation of the eukaryotic flagellum or cilium (exchangeable terms). Calmodulin (CaM) is known to be critical for flagellar motility; however, it is unknown whether and how CaM is involved in other flagella-related activities. We have studied CaM in Chlamydomonas, a widely used organism for ciliary studies. CaM is present in the cell body and the flagellum, with enrichment in the basal body region. Loss of CaM causes shortening of the nucleus basal body connector and impairs flagellar motility and assembly but not flagellar disassembly. Moreover, the cam mutant is defective in pH shock-induced deflagellation. The mutant deflagellates, however, upon mechanical shearing and treatment with mastoparan or detergent undergo permeabilization in the presence of calcium, indicating the cam mutant is defective in elevations of cytosolic calcium induced by pH shock, rather than by the deflagellation machinery. Indeed, the cam mutant fails to produce inositol 1,4,5-trisphosphate. Biochemical and genetic analysis showed that CaM does not directly activate PLC. Furthermore, CaM interacts with ADF1, a transient receptor channel that functions in acid-induced calcium entry. Thus, CaM is a critical regulator of flagellar activities especially those involved in modulating calcium homeostasis during acidic stress.-Wu, Q., Gao, K., Zheng, S., Zhu, X., Liang, Y., Pan, J. Calmodulin regulates a TRP channel (ADF1) and phospholipase C (PLC) to mediate elevation of cytosolic calcium during acidic stress that induces deflagellation in Chlamydomonas.


Assuntos
Sinalização do Cálcio , Calmodulina/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/metabolismo , Prótons , Estresse Fisiológico
14.
J Cell Sci ; 129(15): 3008-14, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27311484

RESUMO

Fresh water protozoa and algae face hypotonic challenges in their living environment. Many of them employ a contractile vacuole system to uptake excessive water from the cytoplasm and expel it to the environment to achieve cellular homeostasis. K(+), a major osmolyte in contractile vacuole, is predicted to create higher osmolarity for water influx. Molecular mechanisms for K(+) permeation through the plasma membrane have been well studied. However, how K(+) permeates organelles such as the contractile vacuole is not clear. Here, we show that the six-transmembrane K(+) channel KCN11 in Chlamydomonas is exclusively localized to contractile vacuole. Ectopic expression of KCN11 in HEK293T cells results in voltage-gated K(+) channel activity. Disruption of the gene or mutation of key residues for K(+) permeability of the channel leads to dysfunction of cell osmoregulation in very hypotonic conditions. The contractile cycle is inhibited in the mutant cells with a slower rate of contractile vacuole swelling, leading to cell death. These data demonstrate a new role for six-transmembrane K(+) channels in contractile vacuole functioning and provide further insights into osmoregulation mediated by the contractile vacuole.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Organelas/metabolismo , Osmorregulação , Canais de Potássio/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Canais de Potássio/química , Transporte Proteico , Vacúolos/metabolismo
15.
Anal Chem ; 90(15): 8919-8926, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29987923

RESUMO

Hereditary hearing loss is a common clinical neurosensory disorder in humans and has a high demand for genetic screening. Current screening techniques using peripheral blood or dried blood spots (DBSs) are invasive. Therefore, this study aims to develop a noninvasive and accurate detection method for eight hotspot deafness-associated mutations based on buccal swab and droplet digital PCR (ddPCR). First, this method was evaluated for analytic performance including specificity, detection limit, dynamic range using plasmid DNA. The specificity was 100% and the detection limit was 5 copies. The dynamic range of this ddPCR-based method was from 10 to 105 copies/µL. Next, the method was found to accurately quantify mitochondrial gene heteroplasmy rate as low as 1% for both m.1494C > T and m.1555A > G sites. Then, we demonstrated that buccal swab was a reliable sample. DNA can be extracted and accurately quantified after a buccal swab had been stored for 90 days at either room temperature or -20 °C. Finally, clinical samples (23 DBSs and 42 buccal swabs) were tested to further evaluate the accuracy and clinical applicability of this method. All clinical samples were accurately quantified and genotyped. This noninvasive and accurate method is highly promising as a genetic screening method for deafness-associated mutations due to its high sensitivity and accuracy.


Assuntos
Análise Mutacional de DNA/métodos , Surdez/genética , Adulto , Criança , DNA/genética , Surdez/congênito , Surdez/diagnóstico , Feminino , Testes Genéticos/métodos , Genótipo , Humanos , Recém-Nascido , Masculino , Mutação , Triagem Neonatal/métodos , Reação em Cadeia da Polimerase/métodos , Manejo de Espécimes/métodos , Adulto Jovem
16.
Cell Mol Life Sci ; 74(18): 3425-3437, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28417161

RESUMO

Intraflagellar transport (IFT) is required for ciliogenesis by ferrying ciliary components using IFT complexes as cargo adaptors. IFT54 is a component of the IFT-B complex and is also associated with cytoplasmic microtubules (MTs). Loss of IFT54 impairs cilia assembly as well as cytoplasmic MT dynamics. The N-terminal calponin homology (CH) domain of IFT54 interacts with tubulins/MTs and has been proposed to transport tubulin during ciliogenesis, whereas the C-terminal coiled-coil (CC) domain binds IFT20. However, the precise function of these domains in vivo is not well understood. We showed that in Chlamydomonas, loss of IFT54 completely blocks ciliogenesis but does not affect spindle formation and proper cell cycle progression, even though IFT54 interacts with mitotic MTs. Interestingly, IFT54 lacking the CH domain allows proper flagellar assembly. The CH domain is required for the association of IFT54 with the axoneme but not with mitotic MTs, and also regulates the flagellar import of IFT54 but not IFT81 and IFT46. The C-terminal CC domain is essential for IFT54 to bind IFT20, and for its recruitment to the basal body and incorporation into IFT complexes. Complete loss of IFT54 or the CC domain destabilizes IFT20. ift54 mutant cells expressing the CC domain alone rescue the stability of IFT20 and form stunted flagella with accumulation of both IFT-A component IFT43 and IFT-B component IFT46, indicating that IFT54 also functions in IFT turn-around at the flagellar tip.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Algas/química , Proteínas de Transporte/química , Centrossomo/metabolismo , Chlamydomonas/metabolismo , Flagelos/fisiologia , Microscopia Eletrônica , Microtúbulos/química , Microtúbulos/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos , Estabilidade Proteica , Regeneração , Tubulina (Proteína)/química , Técnicas do Sistema de Duplo-Híbrido
17.
J Proteome Res ; 16(7): 2410-2418, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28534617

RESUMO

Primary cilia are assembled and disassembled during cell cycle progression. During ciliary disassembly, ciliary axonemal microtubules (MTs) are depolymerized accompanied by extensive posttranslational protein modifications of ciliary proteins including protein phosphorylation, methylation, and ubiquitination. These events are hypothesized to involve transport of effectors or regulators into cilia at the time of ciliary disassembly from the cell body. To prove this hypothesis and identify new proteins involved in ciliary disassembly, we analyzed disassembling flagella in Chlamydomonas using comparative proteomics with TMT labeling. Ninety-one proteins were found to increase more than 1.4-fold in four replicates. The proteins of the IFT machinery not only increase but also exhibit stoichiometric changes. The other proteins that increase include signaling molecules, chaperones, and proteins involved in microtubule dynamics or stability. In particular, we have identified a ciliopathy protein C21orf2, the AAA-ATPase CDC48, that is involved in segregating polypeptides from large assemblies or cellular structures, FAP203 and FAP236, which are homologous to stabilizers of axonemal microtubules. Our data demonstrate that ciliary transport of effectors or regulators is one of the mechanisms underlying ciliary disassembly. Further characterization of the proteins identified will provide new insights into our understanding of ciliary disassembly and likely ciliopathy.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Algas/metabolismo , Transporte Biológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Cílios/genética , Cílios/ultraestrutura , Flagelos/genética , Flagelos/ultraestrutura , Microscopia de Interferência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/ultraestrutura , Proteômica/métodos , Transdução de Sinais
18.
Cell Mol Life Sci ; 73(9): 1787-802, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26869233

RESUMO

As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated.


Assuntos
Cílios/fisiologia , Actinas/metabolismo , Animais , Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Chlamydomonas/metabolismo , Cílios/química , Humanos , Modificação Traducional de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Quinase 1 Polo-Like
19.
J Cell Sci ; 127(Pt 2): 281-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24259666

RESUMO

Eukaryotic flagella and cilia can exhibit planar and non-planar beating, and the mechanism controlling these beating patterns is not well understood. Chlamydomonas reinhardtii flagella beat in approximately the same plane with either an asymmetric ciliary-type or symmetric flagellar-type waveform. Each B-tubule of the number 1, 5 and 6 doublets of the flagellar axoneme possesses a beak-like structure. The number 5 and 6 beak structures are implicated in conversion of ciliary motion into flagellar motion. Here, we show that in a null mutant of Bug22, the asymmetric ciliary waveform is converted into a three-dimensional (non-planar) symmetric flagellar waveform. Bug22 is localized to approximately the proximal half to two-thirds of the flagellum, similar to localization of beak-like structures. However, as shown by immunogold labeling, Bug22 associates with axonemal microtubules without apparent preference for any particular doublets. Interestingly, bug22 mutants lack all beak-like structures. We propose that one function of Bug22 is to regulate the anchoring of the beak-like structures to the doublet microtubules and confine flagellar beating to a plane.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/metabolismo , Sequência Conservada , Flagelos/fisiologia , Proteínas de Plantas/metabolismo , Axonema/metabolismo , Movimento Celular , Chlamydomonas reinhardtii/ultraestrutura , Flagelos/ultraestrutura , Microtúbulos/metabolismo , Mutação/genética , Proteínas de Plantas/genética , Ligação Proteica
20.
Proc Natl Acad Sci U S A ; 110(30): 12337-42, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836633

RESUMO

Specification of organelle size is crucial for cell function, yet we know little about the molecular mechanisms that report and regulate organelle growth and steady-state dimensions. The biflagellated green alga Chlamydomonas requires continuous-length feedback to integrate the multiple events that support flagellar assembly and disassembly and at the same time maintain the sensory and motility functions of the organelle. Although several length mutants have been characterized, the requisite molecular reporter of length has not been identified. Previously, we showed that depletion of Chlamydomonas aurora-like protein kinase CALK inhibited flagellar disassembly and that a gel-shift-associated phosphorylation of CALK marked half-length flagella during flagellar assembly. Here, we show that phosphorylation of CALK on T193, a consensus phosphorylation site on the activation loop required for kinase activity, is distinct from the gel-shift-associated phosphorylation and is triggered when flagellar shortening is induced, thereby implicating CALK protein kinase activity in the shortening arm of length control. Moreover, CALK phosphorylation on T193 is dynamically related to flagellar length. It is reduced in cells with short flagella, elevated in the long flagella mutant, lf4, and dynamically tracks length during both flagellar assembly and flagellar disassembly in WT, but not in lf4. Thus, phosphorylation of CALK in its activation loop is implicated in the disassembly arm of a length feedback mechanism and is a continuous and dynamic molecular marker of flagellar length during both assembly and disassembly.


Assuntos
Biomarcadores , Flagelos , Organelas , Proteínas Quinases/metabolismo , Ativação Enzimática , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA