Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell ; 174(6): 1477-1491.e19, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146158

RESUMO

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Assuntos
Apoptose , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Adulto , Idoso , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Axônios/metabolismo , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Medula Espinal/metabolismo , Estaurosporina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
2.
Proc Natl Acad Sci U S A ; 121(11): e2315550121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437556

RESUMO

TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.


Assuntos
Autofagia , Proteínas de Ciclo Celular , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Rim , Mamíferos
3.
Proc Natl Acad Sci U S A ; 119(12): e2116776119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35294289

RESUMO

Shigella flexneri, a gram-negative bacterium, is the major culprit of bacterial shigellosis and causes a large number of human infection cases and deaths worldwide annually. For evading the host immune response during infection, S. flexneri secrets two highly similar E3 ligases, IpaH1.4 and IpaH2.5, to subvert the linear ubiquitin chain assembly complex (LUBAC) of host cells, which is composed of HOIP, HOIL-1L, and SHARPIN. However, the detailed molecular mechanism underpinning the subversion of the LUBAC by IpaH1.4/2.5 remains elusive. Here, we demonstrated that IpaH1.4 can specifically recognize HOIP and HOIL-1L through its leucine-rich repeat (LRR) domain by binding to the HOIP RING1 domain and HOIL-1L ubiquitin-like (UBL) domain, respectively. The determined crystal structures of IpaH1.4 LRR/HOIP RING1, IpaH1.4 LRR/HOIL-1L UBL, and HOIP RING1/UBE2L3 complexes not only elucidate the binding mechanisms of IpaH1.4 with HOIP and HOIL-1L but also unveil that the recognition of HOIP by IpaH1.4 can inhibit the E2 binding of HOIP. Furthermore, we demonstrated that the interaction of IpaH1.4 LRR with HOIP RING1 or HOIL-1L UBL is essential for the ubiquitination of HOIP or HOIL-1L in vitro as well as the suppression of NF-κB activation by IpaH1.4 in cells. In summary, our work elucidated that in addition to inducing the proteasomal degradation of LUBAC, IpaH1.4 can also inhibit the E3 activity of LUBAC by blocking its E2 loading and/or disturbing its stability, thereby providing a paradigm showing how a bacterial E3 ligase adopts multiple tactics to subvert the key LUBAC of host cells.


Assuntos
Shigella flexneri , Ubiquitina-Proteína Ligases , Humanos , NF-kappa B/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Genes Dev ; 31(10): 1024-1035, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619731

RESUMO

Aberrant activation of the Wnt signaling pathway plays an important role in human cancer development. Wnt signaling is negatively regulated by Axin, a scaffolding protein that controls a rate-limiting step in the destruction of ß-catenin, the central activator of the Wnt pathway. In Wnt-stimulated cells, Axin is rapidly modified by tankyrase-mediated poly(ADP-ribosyl)ation, which promotes the proteolysis of Axin and consequent stabilization of ß-catenin. Thus, regulation of the levels and activity of tankyrases is mechanistically important in controlling Wnt signaling. Here, we identify ubiquitin-specific protease 25 (USP25) as a positive regulator of Wnt/ß-catenin signaling. We found that USP25 directly interacted with tankyrases to promote their deubiquitination and stabilization. We demonstrated that USP25 deficiency could promote the degradation of tankyrases and consequent stabilization of Axin to antagonize Wnt signaling. We further characterized the interaction between TNKS1 and USP25 by X-ray crystal structure determination. Our results provide important new insights into the molecular mechanism that regulates the turnover of tankyrases and the possibility of targeting the stability of tankyrases by antagonizing their interaction with USP25 to modulate the Wnt/ß-catenin pathway.


Assuntos
Estabilidade Enzimática/genética , Tanquirases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Via de Sinalização Wnt/fisiologia , Repetição de Anquirina , Proteína Axina/metabolismo , Linhagem Celular , Cristalografia por Raios X , Células HCT116 , Células HEK293 , Humanos , Mutação , Ligação Proteica , Tanquirases/química , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Via de Sinalização Wnt/genética
5.
Genes Dev ; 31(11): 1162-1176, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701375

RESUMO

Stimulation of cells with TNFα leads to the formation of the TNF-R1 signaling complex (TNF-RSC) to mediate downstream cellular fate decision. Activation of the TNF-RSC is modulated by different types of ubiquitination and may lead to cell death, including apoptosis and necroptosis, in both RIPK1-dependent and RIPK1-independent manners. Spata2 (spermatogenesis-associated 2) is an adaptor protein recruited into the TNF-RSC to modulate the interaction between the linear ubiquitin chain assembly complex (LUBAC) and the deubiquitinase CYLD (cylindromatosis). However, the mechanism by which Spata2 regulates the activation of RIPK1 is unclear. Here, we report that Spata2-deficient cells show resistance to RIPK1-dependent apoptosis and necroptosis and are also partially protected against RIPK1-independent apoptosis. Spata2 deficiency promotes M1 ubiquitination of RIPK1 to inhibit RIPK1 kinase activity. Furthermore, we provide biochemical evidence for the USP domain of CYLD and the PUB domain of the SPATA2 complex preferentially deubiquitinating the M1 ubiquitin chain in vitro. Spata2 deficiency also promotes the activation of MKK4 and JNK and cytokine production independently of RIPK1 kinase activity. Spata2 deficiency sensitizes mice to systemic inflammatory response syndrome (SIRS) induced by TNFα, which can be suppressed by RIPK1 inhibitor Nec-1s. Thus, Spata2 can regulate inflammatory response and cell death in both RIPK1-dependent and RIPK1-independent manners.


Assuntos
Proteínas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ubiquitinação/genética , Animais , Apoptose/genética , Células Cultivadas , Ativação Enzimática/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases/genética , Proteínas/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Síndrome de Resposta Inflamatória Sistêmica/enzimologia , Síndrome de Resposta Inflamatória Sistêmica/genética
6.
Genes Dev ; 30(7): 870, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036968

RESUMO

In the above-mentioned article, it has come to the authors' attention that, during the preparation of Figure 5C and Supplemental Figure S2C for the final version of this article, the authors unintentionally assembled incorrect tubulin immunoblots due to similarities in the markings or names, such as FLT3 versus FT, between two similar experiments. The amended versions of these figures are shown below. Neither the quantitative determinations nor the conclusions of this article are altered. The authors apologize for these errors.

7.
Biochem Biophys Res Commun ; 689: 149239, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37976837

RESUMO

HOIL-1L and SHARPIN are two essential regulatory subunits of the linear ubiquitin chain assembly complex (LUBAC), which is the only known E3 ligase complex generating linear ubiquitin chains. In addition to their LUBAC-dependent functions, HOIL-1L and SHARPIN alone play crucial roles in many LUBAC-independent cellular processes. Importantly, deficiency of HOIL-1L or SHARPIN leads to severe disorders in humans or mice. However, the mechanistic bases underlying the multi-functions of HOIL-1L and SHARPIN are still largely unknown. Here, we uncover that HOIL-1L and SHARPIN alone can form homo-dimers through their LTM motifs. We solve two crystal structures of the dimeric LTM motifs of HOIL-1L and SHARPIN, which not only elucidate the detailed molecular mechanism underpinning the dimer formations of HOIL-1L and SHARPIN, but also reveal a general mode shared by the LTM motifs of HOIL-1L and SHARPIN for forming homo-dimer or hetero-dimer. Furthermore, we elucidate that the polyglucosan body myopathy-associated HOIL-1L A18P mutation disturbs the structural folding of HOIL-1L LTM, and disrupts the dimer formation of HOIL-1L. In summary, our study provides mechanistic insights into the homo-dimerization of HOIL-1L and SHARPIN mediated by their LTM motifs, and expands our understandings of the multi-functions of HOIL-1L and SHARPIN as well as the etiology of relevant human disease caused by defective HOIL-1L.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitinas , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Dimerização , NF-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(35): 21391-21402, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817423

RESUMO

Syntaxin17, a key autophagosomal N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, can associate with ATG8 family proteins SNAP29 and VAMP8 to facilitate the membrane fusion process between the double-membraned autophagosome and single-membraned lysosome in mammalian macroautophagy. However, the inherent properties of Syntaxin17 and the mechanistic basis underlying the interactions of Syntaxin17 with its binding proteins remain largely unknown. Here, using biochemical, NMR, and structural approaches, we systemically characterized Syntaxin17 as well as its interactions with ATG8 family proteins, SNAP29 and VAMP8. We discovered that Syntaxin17 alone adopts an autoinhibited conformation mediated by a direct interaction between its Habc domain and the Qa-SNARE motif. In addition, we revealed that the Qa-SNARE region of Syntaxin17 contains one LC3-interacting region (LIR) motif, which preferentially binds to GABARAP subfamily members. Importantly, the GABARAP binding of Syntaxin17 can release its autoinhibited state. The determined crystal structure of the Syntaxin17 LIR-GABARAP complex not only provides mechanistic insights into the interaction between Syntaxin17 and GABARAP but also reveals an unconventional LIR motif with a C-terminally extended 310 helix for selectively binding to ATG8 family proteins. Finally, we also elucidated structural arrangements of the autophagic Syntaxin17-SNAP29-VAMP8 SNARE core complex, and uncovered its conserved biochemical and structural characteristics common to all other SNAREs. In all, our findings reveal three distinct states of Syntaxin17, and provide mechanistic insights into the Syntaxin17-mediated autophagosome-lysosome fusion process.


Assuntos
Autofagossomos/fisiologia , Lisossomos/fisiologia , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Motivos de Aminoácidos , Proteínas Reguladoras de Apoptose/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Escherichia coli , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
9.
Brain ; 144(5): 1509-1525, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33876242

RESUMO

Parkinson's disease is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. The LRRK2 G2019S mutation is one of the major determinants of familial Parkinson's disease cases and leads to late-onset Parkinson's disease with pleomorphic pathology, including α-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF). We observed aggregates containing NSF in basal ganglia specimens from patients with Parkinson's disease carrying the G2019S variant, and in cellular and animal models expressing the LRRK2 G2019S variant. We found that LRRK2 G2019S kinase activity induces the accumulation of NSF in toxic aggregates. Of note, the induction of autophagy cleared NSF aggregation and rescued motor and cognitive impairment observed in aged hG2019S bacterial artificial chromosome (BAC) mice. We suggest that LRRK2 G2019S pathological phosphorylation impacts on NSF biochemical properties, thus causing the formation of cytotoxic protein inclusions.


Assuntos
Encéfalo/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , Animais , Autofagia/fisiologia , Humanos , Mutação , Doença de Parkinson/patologia , Fosforilação , Agregação Patológica de Proteínas/patologia
10.
J Am Soc Nephrol ; 32(8): 1946-1960, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34330769

RESUMO

BACKGROUND: Slit diaphragm is a specialized adhesion junction between the opposing podocytes, establishing the final filtration barrier to urinary protein loss. At the cytoplasmic insertion site of each slit diaphragm there is an electron-dense and protein-rich cellular compartment that is essential for slit diaphragm integrity and signal transduction. Mutations in genes that encode components of this membrane-less compartment have been associated with glomerular diseases. However, the molecular mechanism governing formation of compartmentalized slit diaphragm assembly remains elusive. METHODS: We systematically investigated the interactions between key components at slit diaphragm, such as MAGI2, Dendrin, and CD2AP, through a combination of biochemical, biophysical, and cell biologic approaches. RESULTS: We demonstrated that MAGI2, a unique MAGUK family scaffold protein at slit diaphragm, can autonomously undergo liquid-liquid phase separation. Multivalent interactions among the MAGI2-Dendrin-CD2AP complex drive the formation of the highly dense slit diaphragm condensates at physiologic conditions. The reconstituted slit diaphragm condensates can effectively recruit Nephrin. A nephrotic syndrome-associated mutation of MAGI2 interfered with formation of the slit diaphragm condensates, thus leading to impaired enrichment of Nephrin. CONCLUSIONS: Key components at slit diaphragm (e.g., MAGI2 and its complex) can spontaneously undergo phase separation. The reconstituted slit diaphragm condensates can be enriched in adhesion molecules and cytoskeletal adaptor proteins. Therefore, the electron-dense slit diaphragm assembly might form via phase separation of core components of the slit diaphragm in podocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Barreira de Filtração Glomerular/química , Guanilato Quinases/química , Proteínas de Membrana/química , Podócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fenômenos Biofísicos , Moléculas de Adesão Celular/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/fisiologia , Proteínas de Fluorescência Verde , Guanilato Quinases/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Estrutura Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Transição de Fase , Domínios e Motivos de Interação entre Proteínas
11.
Proc Natl Acad Sci U S A ; 115(50): E11651-E11660, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30459273

RESUMO

NDP52 and TAX1BP1, two SKIP carboxyl homology (SKICH) domain-containing autophagy receptors, play crucial roles in selective autophagy. The autophagic functions of NDP52 and TAX1BP1 are regulated by TANK-binding kinase 1 (TBK1), which may associate with them through the adaptor NAP1. However, the molecular mechanism governing the interactions of NAP1 with NDP52 and TAX1BP1, as well as the effects induced by TBK1-mediated phosphorylation of NDP52 and TAX1BP1, remains elusive. Here, we report the atomic structures of the SKICH regions of NDP52 and TAX1BP1 in complex with NAP1, which not only uncover the mechanistic bases underpinning the specific interactions of NAP1 with the SKICH domains of NDP52 and TAX1BP1 but also reveal the binding mode of a SKICH domain. Moreover, we uncovered that the SKICH domains of NDP52 and TAX1BP1 share a general binding mode to interact with NAP1. Finally, we also evaluated the currently known TBK1-mediated phosphorylation sites in the SKICH domains of NDP52 and TAX1BP1 on the basis of their interactions with NAP1. In all, our findings provide mechanistic insights into the interactions of NAP1 with NDP52 and TAX1BP1, and are valuable for further understanding the functions of these proteins in selective autophagy.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Autofagia/fisiologia , Cristalografia por Raios X , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Proteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , tRNA Metiltransferases
13.
Genes Dev ; 27(15): 1718-30, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913924

RESUMO

Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells.


Assuntos
Autofagia/genética , Chaperonas Moleculares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , Lisossomos/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Pirazinas/farmacologia , Ubiquitinação
14.
Anal Chem ; 92(5): 3913-3922, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31992042

RESUMO

We describe an affinity purification-mass spectrometry (AP-MS) method for probing the interactome of a special targeting protein. The AP was implemented with monolithic micro immobilized metal ion affinity chromatography columns (m-IMAC) which were prepared by photoinitiated polymerization in the tip of a pipet (spin-tip columns). The recombinant His6-tagged protein (bait protein) was reversibly immobilized on the affinity column through the chelating group nitrilotriacetic acid (NTA)-Ni2+. The bait protein and its interacting partners can be easily eluted from the affinity matrix. The pulled-down cellular proteins were then analyzed with label-free quantitative proteomics. We used this method for probing the interactome concerning the GOLD (Golgi dynamics) domain of the autophagy-associated adaptor protein FYCO1. Totally, 96 proteins including seven literature-reported FYCO1-associating proteins were identified. Among them CCZ1 and MON1A were further biochemically validated, and the direct interaction between the FYCO1 GOLD domain with CCZ1 was confirmed by co-immunoprecipitation experiments.


Assuntos
Cromatografia de Afinidade/métodos , Mapas de Interação de Proteínas/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Cromatografia Líquida de Alta Pressão , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Ácido Nitrilotriacético/química , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peptídeos/análise , Ligação Proteica , Proteômica/métodos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Espectrometria de Massas em Tandem
15.
Proc Natl Acad Sci U S A ; 114(7): 1554-1559, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137838

RESUMO

Ranking among the most effective anticancer drugs, anthracyclines represent an important family of aromatic polyketides generated by type II polyketide synthases (PKSs). After formation of polyketide cores, the post-PKS tailoring modifications endow the scaffold with various structural diversities and biological activities. Here we demonstrate an unprecedented four-enzyme-participated hydroxyl regioisomerization process involved in the biosynthesis of kosinostatin. First, KstA15 and KstA16 function together to catalyze a cryptic hydroxylation of the 4-hydroxyl-anthraquinone core, yielding a 1,4-dihydroxyl product, which undergoes a chemically challenging asymmetric reduction-dearomatization subsequently acted by KstA11; then, KstA10 catalyzes a region-specific reduction concomitant with dehydration to afford the 1-hydroxyl anthraquinone. Remarkably, the shunt product identifications of both hydroxylation and reduction-dehydration reactions, the crystal structure of KstA11 with bound substrate and cofactor, and isotope incorporation experiments reveal mechanistic insights into the redox dearomatization and rearomatization steps. These findings provide a distinguished tailoring paradigm for type II PKS engineering.


Assuntos
Aminoglicosídeos/biossíntese , Antraciclinas/metabolismo , Proteínas de Bactérias/metabolismo , Enzimas/metabolismo , Aminoglicosídeos/química , Antraciclinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Vias Biossintéticas , Enzimas/química , Enzimas/genética , Micromonospora/genética , Micromonospora/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutação , Domínios Proteicos , Estereoisomerismo
16.
Biochim Biophys Acta Mol Cell Res ; 1865(10): 1410-1422, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29981772

RESUMO

Linear ubiquitin chain is a latest discovered type of poly-ubiquitin chain that is broadly involved in innate immune and inflammatory pathways. Dysfunctions in its assembly, recognition or disassembly are intimately related with numerous immunodeficiency or autoimmune diseases. Our understanding of the molecular mechanism for linear ubiquitin chain formation, recognition and disassembly has being significantly evolved in recent years, with particular contribution from the biochemical and structural characterizations of related proteins. Here, we focus on the relevant proteins for the synthesis, recognition and digestion of linear ubiquitin chain, and review recent findings to summarize currently known molecular mechanism from a perspective of structural biology.

17.
Adv Exp Med Biol ; 1206: 287-326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31776992

RESUMO

Autophagy is an evolutionarily conserved lysosome-dependent intracellular degradation process that is essential for the maintenance of cellular homeostasis and adaptation to cellular stresses in eukaryotic cells. The most well-characterized type of autophagy, the macroautophagy, involves the progressive sequestration of cytoplasmic components into dedicated double-membraned vesicles called autophagosomes, which ultimately fuse with lysosomes to initiate the autophagic degradation of the sequestered cargo. In the past decade, our understanding of the molecular mechanism of macroautophagy has significantly evolved, with particular contributions from the biochemical and structural characterizations of autophagy-related proteins. In this chapter, we focus on some autophagy regulatory proteins involved in the macroautophagy pathway, summarize their currently known structures, and discuss their relevant molecular mechanisms from a perspective of structural biology.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Autofagossomos , Proteínas Relacionadas à Autofagia/química , Citosol , Lisossomos
18.
Mol Cell ; 37(3): 383-95, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159557

RESUMO

While most SNAREs are permanently anchored to membranes by their transmembrane domains, the dually lipidated SNARE Ykt6 is found both on intracellular membranes and in the cytosol. The cytosolic Ykt6 is inactive due to the autoinhibition of the SNARE core by its longin domain, although the molecular basis of this inhibition is unknown. Here, we demonstrate that unlipidated Ykt6 adopts multiple conformations, with a small population in the closed state. The structure of Ykt6 in complex with a fatty acid suggests that, upon farnesylation, the Ykt6 SNARE core forms four alpha helices that wrap around the longin domain, forming a dominantly closed conformation. The fatty acid, buried in a hydrophobic groove formed between the longin domain and its SNARE core, is essential for maintaining the autoinhibited conformation of Ykt6. Our study reveals that the posttranslationally attached farnesyl group can actively regulate Ykt6 fusion activity in addition to its anticipated membrane-anchoring role.


Assuntos
Proteínas R-SNARE/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Citosol/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Fosforilcolina/metabolismo , Prenilação , Estrutura Terciária de Proteína , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/fisiologia , Ratos , Alinhamento de Sequência
19.
J Med Virol ; 89(10): 1700-1706, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27943329

RESUMO

Acute respiratory infections (ARIs), with viral pathogens as the major contributors, are the most common illnesses worldwide, and increase the morbidity and mortality among the elderly population. The clinical and pathological features of elderly people with ARIs need to be identified for disease intervention. From January 1, 2012 through December 31, 2015, respiratory specimens from patients above 60 years old with ARIs were collected from the outpatient and inpatient settings of six sentinel hospitals in Pudong New Area. Each specimen was tested via multiplex polymerase chain reaction (PCR) for eight target viral etiologies including influenza, human rhinovirus (HRV), human para-influenza virus (PIV), adenovirus (ADV), respiratory syncytial virus (RSV), human metapneumovirus (hMPV), human coronavirus (hCoVs), and human bocavirus (hBoV). A total of 967 elderly patients with ARIs were enrolled, including 589 (60.91%) males, and the median age was 73 years old. 306 (31.64%) patients were tested positive for any one of the eight viruses, including 276 single infections and 30 co-infections. Influenza was the predominant virus (14.17%, 137/967), detected from 21.35% (76/356) of the outpatients and 9.98% (61/611) of the inpatients. Influenza infections presented two annual seasonal peaks during winter and summer. Compared with non-influenza patients, those with influenza were more likely to have fever, cough, sore throat, and fatigue. This study identified influenza as the leading viral pathogen among elderly with ARIs, and two seasonal epidemic peaks were observed in Shanghai. An influenza vaccination strategy needs to be advocated for the elderly population.


Assuntos
Coinfecção/virologia , Monitoramento Epidemiológico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Viroses/epidemiologia , Vírus/isolamento & purificação , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Técnicas de Laboratório Clínico , Coinfecção/epidemiologia , Feminino , Bocavirus Humano/genética , Bocavirus Humano/isolamento & purificação , Humanos , Influenza Humana/complicações , Influenza Humana/epidemiologia , Influenza Humana/virologia , Masculino , Metapneumovirus/genética , Metapneumovirus/isolamento & purificação , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Pacientes Ambulatoriais , Política Pública , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Infecções Respiratórias/diagnóstico , Estações do Ano , Vírus/genética , Vírus/patogenicidade
20.
J Immunol ; 192(12): 5998-6008, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24835391

RESUMO

During inflammation, the proper inflammatory infiltration of neutrophils is crucial for the host to fight against infections and remove damaged cells and detrimental substances. IL-1ß and NADPH oxidase-mediated reactive oxygen species (ROS) have been implicated to play important roles in this process. However, the cellular and molecular basis underlying the actions of IL-1ß and ROS and their relationship during inflammatory response remains undefined. In this study, we use the zebrafish model to investigate these issues. We find that, similar to that of NADPH oxidase-mediated ROS signaling, the Il-1ß-Myd88 pathway is required for the recruitment of neutrophils, but not macrophages, to the injury-induced inflammatory site, whereas it is dispensable for bacterial-induced inflammation. Interestingly, the Il-1ß-Myd88 pathway is independent of NADPH oxidase-mediated ROS signaling and critical for the directional migration, but not the basal random movement, of neutrophils. In contrast, the NADPH oxidase-mediated ROS signaling is required for both basal random movement and directional migration of neutrophils. We further document that ectopic expression of Il-1ß in zebrafish induces an inflammatory disorder, which can be suppressed by anti-inflammatory treatment. Our findings reveal that the Il-1ß-Myd88 axis and NADPH oxidase-mediated ROS signaling are two independent pathways that differentially regulate neutrophil migration during sterile inflammation. In addition, Il-1ß overexpressing Tg(hsp70:(m)il-1ß_eGFP;lyz:DsRed2)hkz10t;nz50 transgenic zebrafish provides a useful animal model for the study of chronic inflammatory disorder and for anti-inflammatory drug discovery.


Assuntos
Movimento Celular/imunologia , Interleucina-1beta/imunologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Neutrófilos/patologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA