Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(42): e2204804119, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215510

RESUMO

Recently, log-periodic quantum oscillations have been detected in the topological materials zirconium pentatelluride (ZrTe5) and hafnium pentatelluride (HfTe5), displaying an intriguing discrete scale invariance (DSI) characteristic. In condensed materials, the DSI is considered to be related to the quasi-bound states formed by massless Dirac fermions with strong Coulomb attraction, offering a feasible platform to study the long-pursued atomic-collapse phenomenon. Here, we demonstrate that a variety of atomic vacancies in the topological material HfTe5 can host the geometric quasi-bound states with a DSI feature, resembling an artificial supercritical atom collapse. The density of states of these quasi-bound states is enhanced, and the quasi-bound states are spatially distributed in the "orbitals" surrounding the vacancy sites, which are detected and visualized by low-temperature scanning tunneling microscope/spectroscopy. By applying the perpendicular magnetic fields, the quasi-bound states at lower energies become wider and eventually invisible; meanwhile, the energies of quasi-bound states move gradually toward the Fermi energy (EF). These features are consistent with the theoretical prediction of a magnetic field-induced transition from supercritical to subcritical states. The direct observation of geometric quasi-bound states sheds light on the deep understanding of the DSI in quantum materials.

2.
Phys Rev Lett ; 132(22): 226003, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877959

RESUMO

The nature of the anomalous metal state has been a major puzzle in condensed matter physics for more than three decades. Here, we report systematic investigation and modulation of the anomalous metal states in high-temperature interface superconductor FeSe films on SrTiO_{3} substrate. Remarkably, under zero magnetic field, the anomalous metal state persists up to 20 K in pristine FeSe films, an exceptionally high temperature standing out from previous observations. In stark contrast, for the FeSe films with nanohole arrays, the characteristic temperature of the anomalous metal state is considerably reduced. We demonstrate that the observed anomalous metal states originate from the quantum tunneling of vortices adjusted by the Ohmic dissipation. Our work offers a perspective for understanding the origin and modulation of the anomalous metal states in two-dimensional bosonic systems.

3.
Small ; 19(17): e2207111, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599616

RESUMO

Chirality transfer is of vital importance that dominates the structure and functionality of biological systems and living matters. External physical stimulations, e.g. polarized light and mechanical forces, can trigger the chirality symmetry breaking, leading to the appearance of the enantiomeric entities created from a chiral self-assembly of achiral molecule. Here, several 2D assemblies with different chirality, synthesized on Au(111) surface by using achiral building blocks - glycylglycine (digly), the simplest polypeptide are reported. By delicately tuning the kinetic factors, i.e., one-step slow/rapid deposition, or stepwise slow deposition with mild annealing, achiral square hydrogen-bond organic frameworks (HOF), homochiral rhombic HOF and racemic rectangular assembly are achieved, respectively. Chirality induction and related symmetry broken in assemblies are introduced by the handedness (H-bond configurations in principle) of the assembled motifs and then amplified to the entire assemblies via the interaction between motifs. The results show that the chirality transfer and induction of biological assemblies can be tuned by altering the kinetic factors instead of applying external forces, which may offer an in-depth understanding and practical approach to peptide chiral assembly on the surfaces and can further facilitate the design of desired complex biomolecular superstructures.

4.
Phys Rev Lett ; 130(3): 036203, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763396

RESUMO

Flat bands (FBs), presenting a strongly interacting quantum system, have drawn increasing interest recently. However, experimental growth and synthesis of FB materials have been challenging and have remained elusive for the ideal form of monolayer materials where the FB arises from destructive quantum interference as predicted in 2D lattice models. Here, we report surface growth of a self-assembled monolayer of 2D hydrogen-bond (H-bond) organic frameworks (HOFs) of 1,3,5-tris(4-hydroxyphenyl)benzene (THPB) on Au(111) substrate and the observation of FB. High-resolution scanning tunneling microscopy or spectroscopy shows mesoscale, highly ordered, and uniform THPB HOF domains, while angle-resolved photoemission spectroscopy highlights a FB over the whole Brillouin zone. Density-functional-theory calculations and analyses reveal that the observed topological FB arises from a hidden electronic breathing-kagome lattice without atomically breathing bonds. Our findings demonstrate that self-assembly of HOFs provides a viable approach for synthesis of 2D organic topological materials, paving the way to explore many-body quantum states of topological FBs.

5.
Nano Lett ; 19(8): 5304-5312, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31287705

RESUMO

High pressure has been demonstrated to be a powerful approach of producing novel condensed-matter states, particularly in tuning the superconducting transition temperature (Tc) of the superconductivity in a clean fashion without involving the complexity of chemical doping. However, the challenge of high-pressure experiment hinders further in-depth research for underlying mechanisms. Here, we have successfully synthesized continuous layer-controllable SnSe2 films on SrTiO3 substrate using molecular beam epitaxy. By means of scanning tunneling microscopy/spectroscopy (STM/S) and Raman spectroscopy, we found that the strong compressive strain is intrinsically built in few-layers films, with a largest equivalent pressure up to 23 GPa in the monolayer. Upon this, unusual 2 × 2 charge ordering is induced at the occupied states in the monolayer, accompanied by prominent decrease in the density of states (DOS) near the Fermi energy (EF), resembling the gap states of CDW reported in transition metal dichalcogenide (TMD) materials. Subsequently, the coexistence of charge ordering and the interfacial superconductivity is observed in bilayer films as a result of releasing the compressive strain. In conjunction with spatially resolved spectroscopic study and first-principles calculation, we find that the enhanced interfacial superconductivity with an estimated Tc of 8.3 K is observed only in the 1 × 1 region. Such superconductivity can be ascribed to a combined effect of interfacial charge transfer and compressive strain, which leads to a considerable downshift of the conduction band minimum and an increase in the DOS at EF. Our results provide an attractive platform for further in-depth investigation of compression-induced charge ordering (monolayer) and the interplay between charge ordering and superconductivity (bilayer). Meanwhile, it has opened up a pathway to prepare strongly compressed two-dimensional materials by growing onto a SrTiO3 substrate, which is promising to induce superconductivity with a higher Tc.

6.
Nano Lett ; 19(5): 3327-3335, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30995413

RESUMO

Materials can exhibit exotic properties when they approach the two-dimensional (2D) limit. Because of promising applications in catalysis and energy storage, 2D transition-metal carbides (TMCs) have attracted considerable attention in recent years. Among these TMCs, ultrathin crystalline α-Mo2C flakes have been fabricated by chemical vapor deposition on Cu/Mo bilayer foils, and their 2D superconducting property was revealed by transport measurements. Herein, we studied the ultrathin α-Mo2C flakes by atomic-resolved scanning tunneling microscopy/spectroscopy (STM/S). Strain-related structural modulation and the coexistence of different layer-stacking modes are observed on the Mo-terminated surface of α-Mo2C flakes as well as various lattice defects. Furthermore, an enhanced superconductivity with shorter correlation length was observed by STS technique, and such superconductivity is very robust despite the appearance of the defects. A mechanism of superconducting enhancement is proposed based on the strain-induced strong coupling and the increased disordering originated from lattice defects. Our results provide a comprehensive understanding of the correlations between atomic structure, defects, and enhanced superconductivity of this emerging 2D material.

7.
Phys Chem Chem Phys ; 21(16): 8553-8558, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30964130

RESUMO

The combination of ferroelectricity with narrow-gap high-mobility semiconductors may not only entail both functions of nonvolatile memory and efficient manipulation of signals, but may also facilitate efficient ferroelectric photovoltaics and thermoelectrics. However, these applications are hindered by the wide gap and poor mobility of current ferroelectrics. A recent study (J. Am. Chem. Soc., 2018, 140, 3736) reported a facile, general, low-temperature, and size tunable solution phase synthesis of NaBiS2 and NaBiSe2 that are made of relatively abundant or biocompatible elements, which enables their large-scale practical applications. Herein we show first-principles evidence of their ferroelectricity with a large polarization (∼33 µC cm-2), a moderate bandgap (∼1.6 eV) and a high electron-mobility (∼104 cm2 V-1 s-1). Although they have a relatively small switching barrier, their ferroelectricity can be robust under ambient conditions with enhanced polarization upon either application of a small tensile strain or ion doping, where distortion can be increased and multiferroics may also be obtained, despite reduced mobility. Considering previous reports on photovoltaics and thermoelectrics of similar compounds, sodium bismuth dichalcogenides might be tuned for higher performance with the coexistence of these desirable properties.

8.
Nano Lett ; 18(9): 5482-5487, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30111115

RESUMO

Pristine graphene is known to be nonmagnetic due to its π-conjugated electron system. However, we find that localized magnetic moments can be generated by chemically attaching boron atoms to the graphene sheets. Such spin-polarized states are evidenced by the spin-split of the density of states (DOS) peaks near the Fermi level in scanning tunneling spectroscopy (STS). In the vicinity of several coadsorbed boron atoms, the Coulomb repulsion between multiple spins leads to antiferromagnetic coupling for the induced spin states in the graphene lattice, manifesting itself as an increment of spin-down state at specific regions. Experimental observations and interpretations are rationalized by extensive density functional theory (DFT) simulations.

9.
Proc Natl Acad Sci U S A ; 112(47): 14527-32, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26575621

RESUMO

Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type (boron)-conducting behavior to pristine (nondoped) graphene, which could lead to diverse applications. However, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce. This work describes the controlled growth of centimeter size, high-crystallinity BG sheets. Scanning tunneling microscopy and spectroscopy are used to visualize the atomic structure and the local density of states around boron dopants. It is confirmed that BG behaves as a p-type conductor and a unique croissant-like feature is frequently observed within the BG lattice, which is caused by the presence of boron-carbon trimers embedded within the hexagonal lattice. More interestingly, it is demonstrated for the first time that BG exhibits unique sensing capabilities when detecting toxic gases, such as NO2 and NH3, being able to detect extremely low concentrations (e.g., parts per trillion, parts per billion). This work envisions that other attractive applications could now be explored based on as-synthesized BG.

10.
Nano Lett ; 14(11): 6400-6, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25343376

RESUMO

Single-layer black phosphorus (BP), or phosphorene, is a highly anisotropic two-dimensional elemental material possessing promising semiconductor properties for flexible electronics. However, the direct bandgap of single-layer black phosphorus predicted theoretically has not been directly measured, and the properties of its edges have not been considered in detail. Here we report atomic scale electronic variation related to strain-induced anisotropic deformation of the puckered honeycomb structure of freshly cleaved black phosphorus using a high-resolution scanning tunneling spectroscopy (STS) survey along the light (x) and heavy (y) effective mass directions. Through a combination of STS measurements and first-principles calculations, a model for edge reconstruction is also determined. The reconstruction is shown to self-passivate most dangling bonds by switching the coordination number of phosphorus from 3 to 5 or 3 to 4.

11.
Phys Rev Lett ; 112(4): 047005, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580484

RESUMO

We use multiscale techniques to determine the extent of local inhomogeneity and superconductivity in Ca0.86Pr0.14Fe2As2 single crystal. The inhomogeneity is manifested as a spatial variation of the praseodymium concentration, local density of states, and superconducting order parameter. We show that the high-Tc superconductivity emerges from cloverlike defects associated with Pr dopants. The highest Tc is observed in both the tetragonal and collapsed tetragonal phases, and its filamentary nature is a consequence of nonuniform Pr distribution that develops localized, isolated superconducting regions within the crystals.

12.
Phys Rev Lett ; 112(7): 077205, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579633

RESUMO

Low energy electron diffraction, scanning tunneling microscopy and spectroscopy, and first-principles spin-dependent density functional theory are utilized to investigate the geometric, electronic, and magnetic structures of the stripe-ordered (1×2) surface of Ca(Fe1-xCox)2As2 (x=0, 0.075). The surface is terminated with a 50% Ca layer. Compared to the bulk, the surface Ca layer has a large inward relaxation (∼0.5 Å), and the underneath As-Fe2-As layer displays a significant buckling. First-principles calculations show that the (1×2) phase is stabilized by the bulk antiferromagnetic spin ordering through the spin-charge-lattice coupling. Strikingly, a superconducting gap (∼7 meV at 7.4 K) is observed to spatially coexist with the (1×2) phase (x=0.075 compound). This implies the coexistence of both superconductivity and AFM ordering at the surface.

13.
Natl Sci Rev ; 11(3): nwad213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312379

RESUMO

Superconductivity transition temperature (Tc) marks the inception of a macroscopic quantum phase-coherent paired state in fermionic systems. For 2D superconductivity, the paired electrons condense into a coherent superfluid state at Tc, which is usually lower than the pairing temperature, between which intrinsic physics including Berezinskii-Kosterlitz-Thouless transition and pseudogap state are hotly debated. In the case of monolayer FeSe superconducting films on SrTiO3(001), although the pairing temperature (Tp) is revealed to be 65-83 K by using spectroscopy characterization, the measured zero-resistance temperature ([Formula: see text]) is limited to 20 K. Here, we report significantly enhanced superconductivity in monolayer FeSe films by δ-doping of Eu or Al on SrTiO3(001) surface, in which [Formula: see text] is enhanced by 12 K with a narrowed transition width ΔTc ∼ 8 K, compared with non-doped samples. Using scanning tunneling microscopy/spectroscopy measurements, we demonstrate lowered work function of the δ-doped SrTiO3(001) surface and enlarged superconducting gaps in the monolayer FeSe with improved morphology/electronic homogeneity. Our work provides a practical route to enhance 2D superconductivity by using interface engineering.

14.
Nanotechnology ; 24(41): 415707, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24060841

RESUMO

Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe0.55Se0.45. This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images.

15.
Nano Lett ; 12(4): 1928-33, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22364382

RESUMO

We used scanning tunneling microscopy and spectroscopy (STM/S) techniques to analyze the relationships between the edge shapes and the electronic structures in as-grown chemical vapor deposition (CVD) graphene nanoribbons (GNRs). A rich variety of single-layered graphene nanoribbons exhibiting a width of several to 100 nm and up to 1 µm long were studied. High-resolution STM images highlight highly crystalline nanoribbon structures with well-defined and clean edges. Theoretical calculations indicate clear spin-split edge states induced by electron-electron Coulomb repulsion. The edge defects can significantly modify these edge states, and different edge structures for both sides of a single ribbon produce asymmetric electronic edge states, which reflect the more realistic features of CVD grown GNRs. Three structural models are proposed and analyzed to explain the observations. By comparing the models with an atomic resolution image at the edge, a pristine (2,1) structure was ruled out in favor of a reconstructed edge structure composed of 5-7 member rings, showing a better match with experimental results, and thereby suggesting the possibility of a defective morphology at the edge of CVD grown nanoribbons.

16.
ACS Nano ; 17(22): 23160-23168, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37926969

RESUMO

The discovery of ferromagnetism in two-dimensional (2D) van der Waals crystals has generated widespread interest. The seeking of robust 2D ferromagnets with high Curie temperature (Tc) is vitally important for next-generation spintronic devices. However, owing to the enhanced spin fluctuation and weak exchange interaction upon the reduced dimensionalities, the exploring of robust 2D ferromagnets with Tc > 300 K is highly demanded but remains challenging. In this work, we fabricated air-stable 2D Cr5Te8/CrTe2 vertical heterojunctions with Tc above 400 K by the chemical vapor deposition method. Transmission electron microscopy demonstrates a high-quality-crystalline epitaxial structure between tri-Cr5Te8 and 1T-CrTe2 with striped moiré patterns and a superior ambient stability over six months. A built-in dual-axis strain together with strong interfacial coupling cooperatively leads to a record-high Tc for the CrxTey family. A temperature-dependent spin-flip process induces the easy axis of magnetization to rotate from the out-of-plane to the in-plane direction, indicating a phase-dependent proximity coupling effect, rationally interpreted by first-principles calculations of the magnetic anisotropy of a tri-Cr5Te8 and 1T-CrTe2 monolayer. Our results provide a material realization of effectively enhancing the transition temperature of 2D ferromagnetism and manipulating the spin-flip of the easy axis, which will facilitate future spintronic applications.

17.
Nat Commun ; 14(1): 7012, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919285

RESUMO

The search for topological superconductivity (TSC) is currently an exciting pursuit, since non-trivial topological superconducting phases could host exotic Majorana modes. However, the difficulty in fabricating proximity-induced TSC heterostructures, the sensitivity to disorder and stringent topological restrictions of intrinsic TSC place serious limitations and formidable challenges on the materials and related applications. Here, we report a new type of intrinsic TSC, namely intrinsic surface topological superconductivity (IS-TSC) and demonstrate it in layered AuSn4 with Tc of 2.4 K. Different in-plane and out-of-plane upper critical fields reflect a two-dimensional (2D) character of superconductivity. The two-fold symmetric angular dependences of both magneto-transport and the zero-bias conductance peak (ZBCP) in point-contact spectroscopy (PCS) in the superconducting regime indicate an unconventional pairing symmetry of AuSn4. The superconducting gap and surface multi-bands with Rashba splitting at the Fermi level (EF), in conjunction with first-principle calculations, strongly suggest that 2D unconventional SC in AuSn4 originates from the mixture of p-wave surface and s-wave bulk contributions, which leads to a two-fold symmetric superconductivity. Our results provide an exciting paradigm to realize TSC via Rashba effect on surface superconducting bands in layered materials.

18.
Nanoscale ; 14(4): 1333-1339, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35014655

RESUMO

Supramolecular tessellation with self-synthesized (C60)7 tiles is achieved based on a cooperative interaction between co-adsorbed C60 and octanethiol (OT) molecules. Tile synthesis and tiling take place simultaneously on a gold substrate leading to a two-dimensional lattice of (C60)7 tiles with OT as the binder molecule filling the gaps between the tiles. This supramolecular tessellation is featured with simultaneous on-site synthesis of tiles and self-organized tiling. In the absence of specific functional groups, the key to ordered tiling for the C60/OT system is the collective van der Waals (vdW) interaction among a large number of molecules. This bicomponent system herein offers a way for the artificial synthesis of 2D complex vdW supramolecular tessellations.

19.
J Phys Chem Lett ; 13(6): 1578-1586, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35138106

RESUMO

The development of patterning materials ("resists") at the nanoscale involves two distinct trends: one is toward high sensitivity and resolution for miniaturization, the other aims at functionalization of the resists to realize bottom-up construction of distinct nanoarchitectures. Patterning of carbon nanostructures, a seemingly ideal application for organic functional resists, has been highly reliant on complicated pattern transfer processes because of a lack of patternable precursors. Herein, we present a fullerene-metal coordination complex as a fabrication material for direct functional patterning of sub-10 nm metal-containing carbon structures. The attachment of one platinum atom per fullerene molecule not only leads to significant improvement of sensitivity and resolution but also enables stable atomic dispersion of the platinum ions within the carbon matrix, which may gain fundamentally new interest in functional patterning of hierarchical carbon nanostructures.

20.
Nanotechnology ; 22(25): 254031, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21572199

RESUMO

Differential analysis of current-voltage characteristics, obtained on the surface of epitaxial films of ferroelectric lead zirconate titanate (Pb(Zr(0.2)Ti(0.8))O(3)) using scanning probe microscopy, was combined with spatially resolved mapping of variations in local conductance to differentiate between candidate mechanisms of local electronic transport and the origin of disorder. Within the assumed approximations, electron transport was inferred to be determined by two mechanisms depending on the magnitude of applied bias, with the low-bias range dominated by the trap-assisted Fowler-Nordheim tunneling through the interface and the high-bias range limited by the hopping conduction through the bulk. Phenomenological analysis of the I-V curves has further revealed that the transition between the low- and high-bias regimes is manifested both in the strength of variations within the I-V curves sampled across the surface, as well as the spatial distribution of conductance. Spatial variations were concluded to originate primarily from the heterogeneity of the interfacial electronic barrier height with an additional small contribution from random changes in the tip-contact geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA