RESUMO
Steroidal saponins, important natural organic compounds in Paris polyphylla var. yunnanensis, have good biological activity. Structural modification of steroidal saponins by microbial transformation could produce a large number of products with novel structures and excellent bioactivity, which can provide functional compounds for the research and development of steroidal drugs. This study summarized the research progress in steroidal saponins and their microbial transformation in P. polyphylla var. yunnanensis. P. polyphylla var. yunnanensis contains 112 steroidal saponins, 8 of which are used as substrates in 35 transformation reactions by 25 microbial species, with the highest transformation rate of 95%. Diosgenin is the most frequently used substrate. Furthermore, the strains, culture medium, reaction conditions, transformation rate, transformation reaction characteristics, and biological activities of the transformed products were summarized. This review may provide reference for the further research on microbial transformation of steroidal saponins in P. polyphylla var. yunnanensis.
Assuntos
Diosgenina , Liliaceae , Melanthiaceae , Saponinas , Diosgenina/análise , Liliaceae/química , Melanthiaceae/química , Rizoma/química , Saponinas/análiseRESUMO
This paper reviewed the traditional use of Paris polyphylla and its active components, aiming to provide reference for the development and utilization of this plant. It was found that P. polyphylla has been used as a medicinal plant by eight ethnic minorities. A total of 62 experiential effective recipes, including 29 simple recipes and 33 compound recipes, were analyzed for their indications, traditional processing methods, medicinal compatibilities, and administration doses. The top three in the eight ethnic minorities sorted by the quantity of folk recipes were the Yi nationality(18), Naxi nationality(13) and Bai nationality(12). P. polyphylla has been widely employed for the treatment of nine categories of diseases, especially the dermatologic diseases, trauma, and toxicosis currently. The collating of material basis for its traditional functions revealed 26 active components, among which 19 were steroidal saponins capable of resisting cancer, furuncles, carbuncles, abscesses, bacteria, inflammation and stopping bleeding. This study preliminarily proved the efficacy of P. polyphylla in treating cancer and respiratory system, digestive system, and genitourinary system diseases, which has provided clues for related basic research of P. polyphylla and development of new preparations.
Assuntos
Liliaceae , Melanthiaceae , Plantas Medicinais , Saponinas , Minorias Étnicas e RaciaisRESUMO
UNLABELLED: Mussels attach to various submerged surfaces by using the byssus, which contains different proteins and is a promising source of water-resistant bio-adhesives for potential use in biotechnological and medical applications. The protein composition of the byssus has not yet been fully understood although at least eleven byssal proteins were characterized previously. In order to increase genomic resources and identify new byssal proteins from mussel Mytilus coruscus, high-throughput Illumina sequencing was undertaken on the foot, and 79,997,776 paired-ends reads were generated, yielding a library containing 88,825ft unigenes. The M. coruscus byssus was divided into three parts, the proximal thread, the distal thread, and the plaque. Byssal proteins from each part of the byssus were analyzed by shotgun-LTQ analysis. The MS/MS spectra were searched against the foot unigenes dataset and 48 byssal proteins were identified from the M. coruscus byssus. From the whole set, 17, 5, and 11 proteins were exclusive to the proximal thread, the distal thread, and the plaque, respectively. These data can be used as a resource for further studies on the roles of byssal proteins in the deposition of different byssus parts (thread vs. plaque) or in the different mechanical properties (tenacity vs. adhesion). BIOLOGICAL SIGNIFICANCE: Byssal proteins are the major component that controls different aspects of the byssal formation process and thus a source of bioactive molecules that would offer interesting perspectives in biomaterials and bio-adhesive fields. In this paper, we characterized the protein set from different partsof Mytilus coruscus byssus by a combination of transcriptome/proteome technical. A whole set of 48 byssal proteins were described here, including proteins of collagen-like, C1q domain-containing, protease inhibitor-like, tyrosinase-like, SOD, and others. Thread (the distal portion and the proximal portion) and plaque showed distinct protein composition. Of the whole byssal protein set, 11 are exclusive to the plaque, 17 are exclusive to the proximal thread, and 5 are exclusive to the distal thread. Only four proteins are shared by all the three parts of the byssus. The new byssal proteins reported here represent a significant expansion of the knowledge base of Mytilus byssal proteins, and are important for further exploring the mechanism of adhesion in mussel.