Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Med Sci ; 43(6): 1096-1106, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924386

RESUMO

OBJECTIVE: The activation state of microglia is known to occupy a central position in the pathophysiological process of cerebral inflammation. Autophagy is a catabolic process responsible for maintaining cellular homeostasis. In recent years, autophagy has been demonstrated to play an important role in neuroinflammation. Resolvin D1 (RvD1) is a promising therapeutic mediator that has been shown to exert substantial anti-inflammatory and proresolving activities. However, whether RvD1-mediated resolution of inflammation in microglia is related to autophagy regulation needs further investigation. The present study aimed to explore the effect of RvD1 on microglial autophagy and its corresponding pathways. METHODS: Mouse microglial cells (BV-2) were cultured, treated with RvD1, and examined by Western blotting, confocal immunofluorescence microscopy, transmission electron microscopy, and flow cytometry. RESULTS: RvD1 promoted autophagy in both BV-2 cells and mouse primary microglia by favoring the maturation of autophagosomes and their fusion with lysosomes. Importantly, RvD1 had no significant effect on the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, RvD1-induced mTOR-independent autophagy was confirmed by observing reduced cytoplasmic calcium levels and suppressed calcium/calmodulin-dependent protein kinase II (CaMK II) activation. Moreover, by downregulating ATG5, the increased phagocytic activity induced by RvD1 was demonstrated to be tightly controlled by ATG5-dependent autophagy. CONCLUSION: The present work identified a previously unreported mechanism responsible for the role of RvD1 in microglial autophagy, highlighting its therapeutic potential against neuroinflammation.


Assuntos
Microglia , Doenças Neuroinflamatórias , Camundongos , Animais , Cálcio/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mamíferos
2.
Cell Biosci ; 11(1): 13, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422128

RESUMO

Mechanotransduction couples mechanical stimulation with ion flux, which is critical for normal biological processes involved in neuronal cell development, pain sensation, and red blood cell volume regulation. Although they are key mechanotransducers, mechanosensitive ion channels in mammals have remained difficult to identify. In 2010, Coste and colleagues revealed a novel family of mechanically activated cation channels in eukaryotes, consisting of Piezo1 and Piezo2 channels. These have been proposed as the long-sought-after mechanosensitive cation channels in mammals. Piezo1 and Piezo2 exhibit a unique propeller-shaped architecture and have been implicated in mechanotransduction in various critical processes, including touch sensation, balance, and cardiovascular regulation. Furthermore, several mutations in Piezo channels have been shown to cause multiple hereditary human disorders, such as autosomal recessive congenital lymphatic dysplasia. Notably, mutations that cause dehydrated hereditary xerocytosis alter the rate of Piezo channel inactivation, indicating the critical role of their kinetics in normal physiology. Given the importance of Piezo channels in understanding the mechanotransduction process, this review focuses on their structural details, kinetic properties and potential function as mechanosensors. We also briefly review the hereditary diseases caused by mutations in Piezo genes, which is key for understanding the function of these proteins.

3.
Front Immunol ; 11: 606649, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424852

RESUMO

Sepsis is a clinical syndrome that resulting from a dysregulated inflammatory response to infection that leads to organ dysfunction. The dysregulated inflammatory response transitions from a hyper-inflammatory phase to a hypo-inflammatory or immunosuppressive phase. Currently, no phase-specific molecular-based therapies are available for monitoring the complex immune response and treating sepsis due to individual variations in the timing and overlap of the dysregulated immune response in most patients. Glucocorticoid-induced leucine zipper (GILZ), is broadly present in multiple tissues and circumvent glucocorticoid resistance (GCR) or unwanted side effects. Recently, the characteristics of GILZ downregulation during acute hyperinflammation and GILZ upregulation during the immunosuppressive phase in various inflammatory diseases have been well documented, and the protective effects of GILZ have gained attention in the field of sepsis. However, whether GILZ could be a promising candidate biomarker for monitoring and treating septic patients remains unknown. Here, we discuss the effect of GILZ in sepsis and sepsis-induced immunosuppression.


Assuntos
Sepse/sangue , Fatores de Transcrição/sangue , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores/sangue , Glucocorticoides/uso terapêutico , Humanos , Imunossupressores/uso terapêutico , Valor Preditivo dos Testes , Prognóstico , Sepse/diagnóstico , Sepse/tratamento farmacológico , Sepse/imunologia , Transdução de Sinais
4.
Int Immunopharmacol ; 77: 105973, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31677992

RESUMO

Sepsis is a syndrome of life-threatening organ dysfunction caused by dysregulated host responses to infection. Macrophage polarization is a key process involved in the pathogenesis of sepsis. Recent evidence has demonstrated that autophagy participates in the regulation of macrophage polarization in different phases of inflammation. Here, we investigated whether trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the macrophage M2 phenotype by enhancing autophagy to counteract excessive inflammation in a cecal ligation and puncture (CLP) mouse model. TSA stimulation increased the proportions of M2 marker (CD206, CD124 and CD23)-labeled RAW264.7 macrophages. Furthermore, with increasing TSA doses, autophagy was enhanced gradually. Interestingly, the autophagy activator rapamycin (Rap), also known as an mTOR inhibitor, unexpectedly decreased the proportions of M2 marker-labeled macrophages. However, TSA treatment reversed the Rap-induced decreases in CD206-labeled macrophages. Next, we stimulated different groups of RAW264.7 cells with the autophagy inhibitors MHY1485 or 3-methyladenine (3-MA). Inhibition of autophagy at any stage in the process suppressed TSA-induced macrophage M2 polarization, but the effect was not associated with mTOR activity. In vivo, TSA administration promoted peritoneal macrophage M2 polarization, increased LC3 II expression, attenuated sepsis-induced organ (lung, liver and kidney) injury, and altered systemic inflammatory cytokine secretion. However, 3-MA abolished the protective effects of TSA in CLP mice and decreased the number of M2 peritoneal macrophages. Therefore, TSA promotes the macrophage M2 phenotype by enhancing autophagy to reduce systemic inflammation and ultimately improves the survival of mice with polymicrobial sepsis.


Assuntos
Autofagia/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Inflamação/tratamento farmacológico , Macrófagos Peritoneais/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Inflamação/metabolismo , Ligadura/métodos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Punções/métodos , Células RAW 264.7 , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA