Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 304: 135200, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35667506

RESUMO

The storage and reduction of NOx on a series of Fe-modified hydrotalcite-based lean NOx trap catalysts were assessed, together with the product selectivity. The crystal structures and micromorphologies of these materials were characterized using X-ray diffraction and scanning electron microscopy, while in situ diffuse reflectance Fourier transform infrared spectroscopy was used to evaluate the evolution of transition state species. The introduction of Fe was found to improve the synergistic interaction between the Mg and Fe in the hydrotalcite structure, allowing these catalysts to work efficiently at low temperatures. In addition, both Pt/BaO/MgAlO and Pt/BaO/MgFeO catalysts exhibited better NOx adsorption and reduction performance compared with Pt/BaO/Al2O3. The superior performance of the former two materials was attributed to the enhanced adsorption of NOx in the form of nitrates and nitrites by Fe and Mg and to the ready decomposition of these nitrates at low temperatures. A Pt/BaO/MgFeO catalyst showed excellent low temperature activity and high selectivity for N2 together with superior sulfur resistance compared with Pt/BaO/Al2O3.


Assuntos
Alumínio , Nitratos , Hidróxido de Alumínio , Catálise , Ferro/química , Hidróxido de Magnésio , Nitratos/química , Enxofre , Temperatura
2.
ACS Omega ; 6(27): 17372-17378, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278123

RESUMO

Diesel particulate filter is used to reduce particulate matter (PM) emission due to the stringent emission standards. The accumulated PM has been oxidized by the periodical regeneration method to avoid pressure buildup. The innovation of this study is to explore the oxidation performance of Printex-U (PU), which is mixed with ash and soluble organic fractions, under different operating conditions. Different aspects of operating parameters, such as the oxygen ratio in an O2/N2 atmosphere, total flow rate, initial PU mass, and heating rate, on PU oxidation properties have been critically discussed using a thermogravimetric analyzer. The oxygen ratio in the O2/N2 atmosphere is positively correlated with the oxidation characteristics of PU. The comprehensive oxidation index (S ) of PU under the 20% O2/80% N2 atmosphere increases by 184% compared with the 10% O2/90% N2 atmosphere. When the initial PU mass is 3 mg, the combustion stability coefficient (R w) and S reach the best values, which are 55.53 × 105 and 2.03 × 107 %2min-2 ° C-3, respectively. With the increase in the heating rate, the oxidation properties of PU become sensible and deflagration occurs easily, so that 10 °C/min heating rate is the best option. This study provides a theoretical basis for the optimization design of diesel particulates during the regeneration process.

3.
Materials (Basel) ; 14(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208891

RESUMO

Diesel particulates are deposited in the diesel particulate filter and removed by the regeneration process. The Printex-U (PU) particles are simulated as the diesel soot to investigate the influence of thermal aging conditions on soot combustion performance with the addition of catalysts. The comprehensive combustion index S, combustion stability index Rw and peak temperature Tp are obtained to evaluate the combustion performance. Compared with the PU/Pt mixtures of different Pt contents (2 g/ft3, 3.5 g/ft3, and 5 g/ft3), the 10 g/ft3 Pt contents improve soot combustion with the outstanding oxygen absorption ability. When the weight ratio of PU/Pt mixture is 1:1, the promoted effect achieves the maximum degree. The S and Rw increase to 8.90 × 10-8 %2min-2°C-3 and 39.11 × 105, respectively, compared with pure PU. After the thermal aging process, the PU/Pt mixture with a 350 °C aging temperature for 10 h promotes the soot combustion the best when compared to pure PU particles. It is not good as the PU/Pt mixture without aging, because the inner properties of soot and Pt/Al2O3 catalyst may have been changed. The S and Rw are 9.07 × 10-8 %2min-2°C-3 and 38.39 × 105, respectively, which are close to the no aging mixture. This work plays a crucial role in understanding the mechanism of the comprehensive effect of soot and catalyst on soot combustion after the thermal aging process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA