Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(13): e0075422, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35703553

RESUMO

Methyltransferases transfer a methyl group to a diverse group of natural products, thus providing structural diversity, stability, and altered pharmacological properties to the molecules. A limited number of regiospecific sugar-O-methyltransferases are functionally characterized. Thus, discovery of such an enzyme could solve the difficulties of biological production of methoxy derivatives of glycosylated molecules. In the current study, a regiospecific sugar-O-methyltransferase, ThnM1, belonging to the biosynthetic gene cluster (BGC) of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene produced by Nocardia sp. strain CS682, was analyzed and functionally characterized. ThnM1 demonstrated promiscuity to diverse chemical structures such as rhamnose-containing anthraquinones and flavonoids with regiospecific methylation at the 2'-hydroxyl group of the sugar moiety. Compared with other compounds, anthraquinone rhamnosides were found to be the preferred substrates for methylation. Thus, the enzyme was further employed for whole-cell biotransformation using engineered Escherichia coli to produce a methoxy-rhamnosyl derivative of quinizarin, an anthraquinone derivative. The structure of the newly generated derivative from Escherichia coli fermentation was elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopic analyses and identified as quinizarin-4-O-α-l-2-O-methylrhamnoside (QRM). Further, the biological impact of methylation was studied by comparing the cytotoxicity of QRM with that of quinizarin against the U87MG, SNU-1, and A375SM cancer cell lines. IMPORTANCE ThnM1 is a putative sugar-O-methyltransferase produced by the Nocardia sp. strain CS682 and is encoded by a gene belonging to the biosynthetic gene cluster (BGC) of 1-(α-l-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene. We demonstrated that ThnM1 is a promiscuous enzyme with regiospecific activity at the 2'-OH of rhamnose. As regiospecific methylation of sugars by chemical synthesis is a challenging step, ThnM1 may fill the gap in the potential diversification of natural products by methylating the rhamnose moiety attached to them.


Assuntos
Produtos Biológicos , Nocardia , Produtos Biológicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metiltransferases/metabolismo , Nocardia/genética , Nocardia/metabolismo , Ramnose/metabolismo , Açúcares/metabolismo
2.
Biotechnol Appl Biochem ; 69(4): 1723-1732, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34415071

RESUMO

Epothilone A, a microtubule-stabilizing agent used as therapeutics for the treatment of cancers, was biotransformed into three metabolites using Nocardia sp. CS692 and recombinant Nocardia overexpressing a cytochrome P450 from Streptomyces venezuelae (PikC). Among three metabolites produced in the biotransformation reaction mixtures, ESI/MS2 analysis predicted two metabolites (M1 and M2) as novel hydroxylated derivatives (M1 is hydroxylated at the C-8 position and M2 is hydroxylated at C-10 position), each with an opened-epoxide ring in their structure. Interestingly, metabolite M3 lacks an epoxide ring and is known as deoxyepothilone A, which is also called epothilone C. Metabolite M1 was produced only in PikC overexpressing strain. The endogenous enzymes of Nocardia sp. catalyzed hydroxylation of epothilone A to produce metabolite M2 and removed epoxide ring to produce metabolite M3. All the metabolites were identified based on UV-vis analysis and rigorous ESI/MS2 fragmentation based on epothilone A standard. The newly produced metabolites are anticipated to display novel cytotoxic effects and could be subjects of further pharmacological studies.


Assuntos
Nocardia , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Epotilonas , Compostos de Epóxi , Humanos , Nocardia/genética , Nocardia/metabolismo
3.
J Ind Microbiol Biotechnol ; 47(6-7): 537-542, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32588231

RESUMO

Alizarin has been reported to have an antigenotoxic activity along with an inhibitory effect on the tumor cell growth of human colon carcinoma cells. Alizarin was biotransformed into an O-methoxide derivative using O-methyltransferase from Streptomyces avermitilis MA4680 (SaOMT2) to enhance its bioefficacy. The biotransformed product was extracted, purified, and characterized using various chromatographic and spectroscopic analyses, and confirmed to be an alizarin 2-O-methoxide. The antiproliferative activity of the compound against gastric cancer cells (AGS), uterine cervical cancer (Hela), liver cancer (HepG2), and normal cell lines was investigated. Alizarin 2-O-methoxide showed an inhibitory effect on all three cancer-cell lines at very low concentrations, from 0.078 µM, with no cytotoxicity against 267B1 (human prostate epithelial) and MRC-5 (normal human fetal lung fibroblast).


Assuntos
Antraquinonas/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias/patologia , Streptomyces/enzimologia , Biotransformação , Linhagem Celular Tumoral , Escherichia coli , Células HeLa , Células Hep G2 , Humanos , Microbiologia Industrial , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Neoplasias/tratamento farmacológico
4.
Microb Cell Fact ; 18(1): 137, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409353

RESUMO

Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.


Assuntos
Actinobacteria/enzimologia , Actinobacteria/genética , Macrolídeos/metabolismo , Policetídeos/metabolismo , Produtos Biológicos/metabolismo , Engenharia Genética , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
5.
Microb Cell Fact ; 18(1): 7, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654816

RESUMO

BACKGROUND: Multi-monocistronic and multi-variate vectors were designed, built, and tested for the improved production of cyanidin 3-O-glucoside (C3G) in Escherichia coli BL21 (DE3). The synthetic bio-parts were designed in such a way that multiple genes can be assembled using the bio-brick system, and expressed under different promoters in a single vector. The vectors harbor compatible cloning sites, so that the genes can be shuffled from one vector to another in a single step, and assembled into a single vector. The two required genes: anthocyanidin synthase (PhANS) from Petunia hybrida, and cyanidin 3-O-glucosyltransferase (At3GT) from Arabidopsis thaliana, were individually cloned under PT7, Ptrc, and PlacUV5 promoters. Both PhANS and At3GT were shuffled back and forth, so as to generate a combinatorial system for C3G production. The constructed systems were further coupled with the genes for UDP-D-glucose synthesis, all cloned in a multi-monocistronic fashion under PT7. Finally, the production of C3G was checked and confirmed using the modified M9 media, and analyzed through various chromatography and spectrometric analyses. RESULTS: The engineered strains endowed with newly generated vectors and the genes for C3G biosynthesis and UDP-D-glucose synthesis were fed with 2 mM (+)-catechin and D-glucose for the production of cyanidin, and its subsequent conversion to C3G. One of the engineered strains harboring At3GT and PhANS under Ptrc promoter and UDP-D-glucose biosynthesis genes under PT7 promoter led to the production of ~ 439 mg/L of C3G within 36 h of incubation, when the system was exogenously fed with 5% (w/v) D-glucose. This system did not require exogenous supplementation of UDP-D-glucose. CONCLUSION: A synthetic vector system using different promoters has been developed and used for the synthesis of C3G in E. coli BL21 (DE3) by directing the metabolic flux towards the UDP-D-glucose. This system has the potential of generating better strains for the synthesis of valuable natural products.


Assuntos
Antocianinas/biossíntese , Escherichia coli/metabolismo , Glucosídeos/biossíntese , Antocianinas/análise , Reatores Biológicos , Catequina/metabolismo , Cromatografia Líquida de Alta Pressão , Glucose/metabolismo , Glucosídeos/análise , Glucosiltransferases/genética , Engenharia Metabólica , Oxigenases/genética , Proteínas de Plantas/genética , Plasmídeos/genética , Plasmídeos/metabolismo
6.
Appl Microbiol Biotechnol ; 103(7): 2959-2972, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798357

RESUMO

Resveratrol (3,5,4'-trihydroxystilbene) and piceatannol (3,5,3',4'-tetrahydroxystilbene) are well-known natural products that are produced by plants. They are important ingredients in pharmaceutical industries and nutritional supplements. They display a wide spectrum of biological activity. Thus, the needs for these compounds are increasing. The natural products have been found in diverse plants, mostly such as grapes, passion fruit, white tea, berries, and many more. The extraction of these products from plants is quite impractical because of the low production in plants, downstream processing difficulties, chemical hazards, and environmental issues. Thus, alternative production in microbial hosts has been devised with combinatorial biosynthetic systems, including metabolic engineering, synthetic biology, and optimization in production process. Since the biosynthesis is not native in microbial hosts such as Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum, genetic engineering and manipulation have made it possible. In this review, the discussion will mainly focus on recent progress in production of resveratrol and piceatannol, including the various strategies used for their production.


Assuntos
Engenharia Metabólica , Microrganismos Geneticamente Modificados , Resveratrol/metabolismo , Estilbenos/metabolismo , Vias Biossintéticas , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética
7.
Appl Microbiol Biotechnol ; 103(19): 7953-7969, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407037

RESUMO

Two sustainable and cost-effective cascade enzymatic systems were developed to regenerate uridine diphosphate (UDP)-α-D-glucose and UDP-ß-L-rhamnose from sucrose. The systems were coupled with the UDP generating glycosylation reactions of UDP sugar-dependent glycosyltransferase (UGT) enzymes mediated reactions. As a result, the UDP generated as a by-product of the GT-mediated reactions was recycled. In the first system, YjiC, a UGT from Bacillus licheniformis DSM 13, was used for transferring glucose from UDP-α-D-glucose to naringenin, in which AtSUS1 from Arabidopsis thaliana was used to synthesize UDP-α-D-glucose and fructose as a by-product from sucrose. In the second system, flavonol 7-O-rhamnosyltransferase (AtUGT89C1) from A. thaliana was used to transfer rhamnose from UDP-ß-L-rhamnose to quercetin, in which AtSUS1 along with UDP-ß-L-rhamnose synthase (AtRHM1), also from A. thaliana, were used to produce UDP-ß-L-rhamnose from the same starter sucrose. The established UDP recycling system for the production of naringenin glucosides was engineered and optimized for several reaction parameters that included temperature, metal ions, NDPs, pH, substrate ratio, and enzymes ratio, to develop a highly feasible system for large-scale production of different derivatives of naringenin and other natural products glucosides, using inexpensive starting materials. The developed system showed the conversion of about 37 mM of naringenin into three different glucosides, namely naringenin, 7-O-ß-D-glucoside, naringenin, 4'-O-ß-D-glucoside, and naringenin, 4',7-O-ß-D-diglucoside. The UDP recycling (RCmax) was 20.10 for naringenin glucosides. Similarly, the conversion of quercetin to quercetin 7-O-α-L-rhamnoside reached a RCmax value of 10.0.


Assuntos
Flavanonas/metabolismo , Glucosídeos/metabolismo , Glucuronosiltransferase/metabolismo , Hexosiltransferases/metabolismo , Quercetina/metabolismo , Sacarose/metabolismo , Arabidopsis/enzimologia , Bacillus licheniformis/enzimologia , Biocatálise , Glucuronosiltransferase/isolamento & purificação , Hexosiltransferases/isolamento & purificação
8.
Appl Microbiol Biotechnol ; 103(19): 8281, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31440791

RESUMO

The name of the author "Yamaguchi Tokutaro" is incorrect for the first and last name has been interchanged. The correct presentation is "Tokutaro Yamaguchi".

9.
Biotechnol Appl Biochem ; 66(4): 484-493, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26498482

RESUMO

Isoflavonoid representatives such as genistein and daidzein are highly potent anticancer, antibacterial, and antioxidant agents. It have been demonstrated that methylation of flavonoids enhanced the transporting ability, which lead to facilitated absorption and greatly increased bioavailability. In this paper, genetically engineered Escherichia coli was reconstructed by harboring E. coli K12-derived metK encoding S-adenosine-l-methionine (SAM) synthase (accession number: K02129) for enhancement of SAM as a precursor and Streptomyces avermitilis originated SaOMT2 (O-methyltransferase, accession number: NP_823558) for methylation of daidzein and genistein as preferred substrates. The formation of desired products via biotransformation including 4'-O-methyl-genistein and 4'-O-methyl-daidzein was confirmed individually by using chromatographical methods such as high-performance liquid chromatography, liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS), and nuclear magnetic resonance (NMR), and NMR (1 H and 13 C). Furthermore, substrates concentration, incubation time, and media parameters were optimized using flask culture. Finally, the most fit conditions were applied for fed-batch fermentation with scale-up to 3 L (working volume) to obtain the maximum yield of the products including 164.25 µM (46.81 mg/L) and 382.50 µM (102.88 mg/L) for 4'-O-methyl genistein and 4'-O-methyl daidzein, respectively. In particular, potent inhibitory activities of those isoflavonoid methoxides against the growth of cancer line (B16F10, AGS, and HepG2) and human umbilical vein endothelial cells were investigated and demonstrated. Taken together, this research work described the production of isoflavonoid-4'-O-methoxides by E. coli engineering, improvement of production, characterization of produced compounds, and preliminary in vitro biological activities of the flavonoids being manufactured.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Escherichia coli/metabolismo , Isoflavonas/biossíntese , Isoflavonas/farmacologia , Engenharia Metabólica , Metanol/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Isoflavonas/química , Metanol/química , Metanol/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Molecules ; 24(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311182

RESUMO

The very well-known bioactive natural product, resveratrol (3,5,4'-trihydroxystilbene), is a highly studied secondary metabolite produced by several plants, particularly grapes, passion fruit, white tea, and berries. It is in high demand not only because of its wide range of biological activities against various kinds of cardiovascular and nerve-related diseases, but also as important ingredients in pharmaceuticals and nutritional supplements. Due to its very low content in plants, multi-step isolation and purification processes, and environmental and chemical hazards issues, resveratrol extraction from plants is difficult, time consuming, impracticable, and unsustainable. Therefore, microbial hosts, such as Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum, are commonly used as an alternative production source by improvising resveratrol biosynthetic genes in them. The biosynthesis genes are rewired applying combinatorial biosynthetic systems, including metabolic engineering and synthetic biology, while optimizing the various production processes. The native biosynthesis of resveratrol is not present in microbes, which are easy to manipulate genetically, so the use of microbial hosts is increasing these days. This review will mainly focus on the recent biotechnological advances for the production of resveratrol, including the various strategies used to produce its chemically diverse derivatives.


Assuntos
Engenharia Metabólica/métodos , Proteínas de Plantas/genética , Plantas/química , Resveratrol/metabolismo , Vias Biossintéticas , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Estrutura Molecular , Plantas/genética , Resveratrol/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Biologia Sintética
11.
J Environ Sci (China) ; 75: 84-97, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473310

RESUMO

A visible light-induced, Cu-doped BiVO4 photocatalyst was synthesized by a microwave hydrothermal method. The photocatalytic efficiency was investigated in the degradation of model water pollutants like Methylene Blue (dye) and ibuprofen (pharmaceuticals), as well as the inactivation of Escherichia coli (bacteria). The Cu-doped BiVO4 samples showed better efficiency than undoped BiVO4, and the 1wt.% Cu-doped BiVO4 sample showed the best efficiency. The degradation of Methylene Blue reached 95%, while the degradation of ibuprofen reached 75%, and the inactivation of E. coli reached 85% in irradiation with visible light. The appearance of additional absorption band shoulders and widening of the optical absorption in the visible range makes the prepared powder an efficient visible light-driven photocatalyst. Moreover, the formation of an in-gap energy state just above the valance band as determined by density functional theory (DFT) first principle calculation, facilitates the wider optical absorption range of the doped system. Similarly, this in-gap energy state also acts as an electron trap, which is favorable for the efficient separation and photoexcited charge carriers' transfer process. The formation of oxygen vacancies due to doping also improved the separation of the charge carrier, which promoted the trapping of electrons and inhibited electron hole recombination, thus increasing the photocatalytic activity. No decrease in the efficiency of the 1wt.% Cu-doped BiVO4 photocatalyst in the degradation of ibuprofen over three consecutive cycles revealed the stability of the photocatalyst towards photocorrosion. These findings highlight the multifunctional applications of Cu-doped BiVO4 in wastewater containing multiple pollutants.


Assuntos
Bismuto/química , Cobre/química , Modelos Químicos , Vanadatos/química , Poluentes Químicos da Água/química , Catálise , Luz , Fotólise , Semicondutores , Eliminação de Resíduos Líquidos , Águas Residuárias/química
12.
Appl Microbiol Biotechnol ; 102(3): 1251-1267, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29308528

RESUMO

Two plant-originated C-glucosyltransferases (CGTs) UGT708D1 from Glycine max and GtUF6CGT1 from Gentiana triflora were accessed for glucosylation of selected flavones chrysin and luteolin. Uridine diphosphate (UDP)-glucose pool was enhanced in Escherichia coli cell cytosol by introducing heterologous UDP-glucose biosynthetic genes, i.e., glucokinase (glk), phosphoglucomutase (pgm2), and glucose 1-phosphate uridylyltransferase (galU), along with glucose facilitator diffusion protein from (glf) from different organisms, in a multi-monocistronic vector with individual T7 promoter, ribosome binding site, and terminator for each gene. The C-glucosylated products were analyzed by high-performance liquid chromatography-photodiode array, high-resolution quadruple time-of-flight electrospray ionization mass spectrometry, and one-dimensional nuclear magnetic resonance analyses. Fed-batch shake flask culture showed 8% (7 mg/L; 16 µM) and 11% (9 mg/L; 22 µM) conversion of chrysin to chrysin 6-C-ß-D-glucoside with UGT708D1 and GtUF6CGT1, respectively. Moreover, the bioengineered E. coli strains with exogenous UDP-glucose biosynthetic genes and glucose facilitator diffusion protein enhanced the production of chrysin 6-C-ß-D-glucoside by approximately 1.4-fold, thus producing 10 mg/L (12%, 24 µM) and 14 mg/L (17%, 34 µM) by UGT708D1 and GtUF6CGT1, respectively, without supplementation of additional UDP-glucose in the medium. The biotransformation was further elevated when the bioengineered strain was scaled up in lab-scale fermentor at 3 L volume. HPLC analysis of fermentation broth extract revealed 50% (42 mg/L, 100 µM) conversion of chrysin to chrysin 6-C-ß-D-glucoside at 48 h upon supplementation of 200 µM of chrysin. The maximum conversion of luteolin was 38% (34 mg/L, 76 µM) in 50-mL shake flask fermentation at 48 h. C-glucosylated derivative of chrysin was found to be more soluble and more stable to high temperature, different pH range, and ß-glucosidase enzyme, than O-glucosylated derivative of chrysin.


Assuntos
Escherichia coli/metabolismo , Flavonas/biossíntese , Glucosídeos/biossíntese , Engenharia Metabólica , Técnicas de Cultura Celular por Lotes , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Fermentação , Flavonoides/metabolismo , Gentiana/enzimologia , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Luteolina/metabolismo , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Glycine max/enzimologia , Espectrometria de Massas por Ionização por Electrospray , Uridina Difosfato Glucose/metabolismo
13.
Appl Microbiol Biotechnol ; 102(22): 9691-9706, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30178203

RESUMO

Resveratrol and its ortho-hydroxylated derivative piceatannol were biosynthesized by modular pathway engineering in Escherichia coli. The biosynthetic pathway was divided into three different modules. Module I includes polyketide biosynthetic genes; module II genes include acetyl-CoA and malonyl-CoA pool-enhancing genes from three different organisms; and module III genes are regiospecific 3'-hydroxylating enzymes. E. coli BL21(DE3) with module I produced 8.6 mg/L of resveratrol from exogenously fed 1 mM p-coumaric acid after 72 h. Combination of module I and acetyl-CoA supplementing module IIb genes from N. farcinica IFM10152 produced 2.5-fold higher (60 mg/L) titer of resveratrol than the module IIa genes from E. coli. The exogenous supplementation of sodium acetate further enhanced production to 64 mg/L. Furthermore, module I with module IIc harboring matBC from S. coelicolor A3(2) produced 73 mg/L of resveratrol, which was elevated to 151 mg/L upon supplementing disodium malonate exogenously. This increment is 17.5-fold higher than module I harboring E. coli BL21(DE3). The combination of module I and two different module II genes yielded 137 mg/L resveratrol when supplemented with both sodium acetate and disodium malonate. The high resveratrol-producing combination module was further modified with incorporation of hpaBC for the ortho-hydroxylation of resveratrol to produce piceatannol. The engineered strain harboring modules I, IIc and III produced 124 mg/L of piceatannol, the highest titer after 72 h in disodium malonate-supplemented strain, which is 2-fold higher than in non-supplemented strain. The remaining resveratrol was about 30 mg/L. Furthermore, caffeic acid (85.5 mg/L) was also produced in the same strain. Resveratrol and piceatannol were biosynthesized along with caffeic acid by three different modules overexpressing acetate and malonate assimilation pathway genes from three different sources. The production titer of both resveratrol and piceatannol could be achieved higher upon blocking acetyl-CoA and malonyl-CoA utilizing pathway genes in host strain.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Resveratrol/metabolismo , Estilbenos/metabolismo , Acetilcoenzima A/metabolismo , Vias Biossintéticas , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Malonil Coenzima A/metabolismo
14.
Biotechnol Appl Biochem ; 65(2): 128-137, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28608479

RESUMO

7,8-Dihydroxyflavone (7,8-DHF) has been conjugated with glucose moiety to produce glucoside derivatives. Three analogues of 7,8-DHF (7-O-ß-d-glucosyl-8-hydroxyflavone, 7-hydroxy-8-O-ß-d-glucosyl flavone, and 7,8-di-O-ß-d-glucosylflavone) have been successfully produced from in vitro reaction using glycosyltransferase of Bacillus licheniformis. Production of these 7,8-DHF derivatives were shifted to cheaper and easier approach in this study by using engineered Escherichia coli BL21 (DE3) ΔpgiΔzwfΔushA cells in which the flow of glucose-6-phospahte toward glycolysis and pentose phosphate pathway and hydrolysis of UDP-α-d-glucose were blocked while directing the carbon flux toward UDP-α-d-glucose by overexpressing UDP-α-d-glucose pathway genes. Supplementation of 300 µM of 7,8-DHF to the culture resulted in production of 171 µM of 7-O-ß-d-glucosyl-8-hydroxyflavone, 68 µM of 7-hydroxy-8-O-ß-d-glucoxyflavone, and 55 µM of 7,8-di-O-ß-d-glucoxyflavone in laboratory-scale 3-L fermentor, representing 98% bioconversion of initially fed substrate to respective glucoside derivatives within 48 H. These products were characterized by high-performance liquid chromatography-photodiode array (HPLC-PDA), HPLC-PDA-quadruple time of flight-electron spray ionization mass spectrometry, and nuclear magnetic resonance analyses. These newly synthesized derivatives were found to be able to interact with amino acids of active site of human ß-site amyloid precursor protein cleaving ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) ß-secretase enzyme in in silico studies, thus displaying possible application in cure of Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonas/metabolismo , Flavonas/farmacologia , Glicosídeos/metabolismo , Glicosídeos/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Bacillus licheniformis/enzimologia , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Vias Biossintéticas , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Flavonas/química , Glicosídeos/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Simulação de Acoplamento Molecular
15.
Molecules ; 23(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154376

RESUMO

Anthraquinones, naturally occurring bioactive compounds, have been reported to exhibit various biological activities, including anti-inflammatory, antiviral, antimicrobial, and anticancer effects. In this study, we biotransformed three selected anthraquinones into their novel O-glucoside derivatives, expressing a versatile glycosyltransferase (YjiC) from Bacillus licheniformis DSM 13 in Escherichia coli. Anthraflavic acid, alizarin, and 2-amino-3-hydroxyanthraquinone were exogenously fed to recombinant E. coli as substrate for biotransformation. The products anthraflavic acid-O-glucoside, alizarin 2-O-ß-d-glucoside, and 2-amino-3-O-glucosyl anthraquinone produced in the culture broths were characterized by various chromatographic and spectroscopic analyses. The comparative anti-proliferative assay against various cancer cells (gastric cancer-AGS, uterine cervical cancer-HeLa, and liver cancer-HepG2) were remarkable, since the synthesized glucoside compounds showed more than 60% of cell growth inhibition at concentrations ranging from ~50 µM to 100 µM. Importantly, one of the synthesized glucoside derivatives, alizarin 2-O-glucoside inhibited more than 90% of cell growth in all the cancer cell lines tested.


Assuntos
Antraquinonas/química , Antraquinonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Antraquinonas/metabolismo , Antineoplásicos/metabolismo , Bactérias/metabolismo , Vias Biossintéticas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Glucosídeos/biossíntese , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
16.
Glycoconj J ; 33(2): 137-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26852037

RESUMO

Epothilone A is a derivative of 16-membered polyketide natural product, which has comparable chemotherapeutic effect like taxol. Introduction of sialic acids to these chemotherapeutic agents could generate interesting therapeutic glycoconjugates with significant effects in clinical studies. Since, most of the organisms biosynthesize sialic acids in their cell surface, they are key mediators in cellular events (cell-cell recognition, cell-matrix interactions). Interaction between such therapeutic sugar parts and cellular polysaccharides could generate interesting result in drugs like epothilone A. Based on this hypothesis, epothilone A glucoside (epothilone A 6-O-ß-D-glucoside) was further decorated by conjugating enzymatically galactose followed by sialic acids to generate epothilone A 7-O-ß-D-glucopyranosyl, 4'-O-α-D-galactoside i.e., lactosyl epothilone A (lac epoA) and two sialosides of epothilone A namely epothilone A 7-O-ß-D-glucopyranosyl, 4'-O-α-D-galactopyranosyl 3″-O-α-N-acetyl neuraminic acid and epothilone A 7-O-ß-D-glucopyranosyl, 4'-O-α-D-galactopyranosyl 6″-O-α-N-acetylneuraminic acid i.e., 3'sialyllactosyl epothilone A: 3'SL-epoA, and 6'sialyllactosyl epothilone A: 6'SL-epoA, respectively. These synthesized analogs were spectroscopically analyzed and elucidated, and biologically validated using HUVEC and HCT116 cancer cell lines.


Assuntos
Epotilonas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ácido Láctico/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Linhagem Celular Tumoral , Epotilonas/farmacocinética , Epotilonas/farmacologia , Humanos
17.
Microb Cell Fact ; 15(1): 135, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27495155

RESUMO

BACKGROUND: Cytochrome P450 monooxygenase constitutes a significant group of oxidative enzymes that can introduce an oxygen atom in a high regio- and stereo-selectivity mode. We used the Bacillus megaterium cytochrome P450 BM3 (CYP450 BM3) and its variants namely mutant 13 (M13) and mutant 15 (M15) for the hydroxylation of diverse class of flavonoids. RESULTS: Among 20 flavonoids, maximum seven flavonoids were hydroxylated by the variants while none of these molecules were accepted by CYP450 BM3 in in vitro reaction. Moreover, M13 exhibited higher conversion of substrates than M15 and CYP450 BM3 enzymes. We found that M13 carried out regiospecific 3'-hydroxylation reaction of naringenin with the highest conversion among all the tested flavonoids. The apparent K m and k cat values of M13 for naringenin were 446 µM and 1.955 s(-1), respectively. In whole-cell biotransformation experiment with 100 µM of naringenin in M9 minimal medium with 2 % glucose in shake flask culture, M13 showed 2.14- and 13.96-folds higher conversion yield in comparison with M15 (16.11 %) and wild type (2.47 %). The yield of eriodictyol was 46.95 µM [~40.7 mg (13.5 mg/L)] in a 3-L volume lab scale fermentor at 48 h in the same medium exhibiting approximately 49.81 % conversion of the substrate. In addition, eriodictyol exhibited higher antibacterial and anticancer potential than naringenin, flavanone and hesperetin. CONCLUSIONS: We elucidated that eriodictyol being produced from naringenin using recombinant CYP450 BM3 and its variants from B. megaterium, which shows an approach for the production of important hydroxylated compounds of various polyphenols that may span pharmaceutical industries.


Assuntos
Bacillus megaterium/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Flavanonas/biossíntese , Flavanonas/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Bactérias/efeitos dos fármacos , Reatores Biológicos , Biotransformação , Linhagem Celular Tumoral , Meios de Cultura/química , Flavanonas/química , Flavanonas/farmacologia , Humanos , Hidroxilação , Cinética , Testes de Sensibilidade Microbiana , Mutação , Oxirredução , Proteínas Recombinantes/metabolismo
18.
Microb Cell Fact ; 14: 76, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26051114

RESUMO

BACKGROUND: A multi-monocistronic synthetic vector was used to assemble multiple genes of a nucleotide diphosphate (NDP)-sugar biosynthetic pathway to construct robust genetic circuits for the production of valuable flavonoid glycosides in Escherichia coli. Characterized functional genes involved in the biosynthesis of uridine diphosphate (UDP)-glucose and thymidine diphosphate (TDP)-rhamnose from various microbial sources along with glucose facilitator diffusion protein (glf) and glucokinase (glk) from Zymomonas mobilis were assembled and overexpressed in a single synthetic multi-monocistronic operon. RESULTS: The newly generated NDP-sugars biosynthesis circuits along with regiospecific glycosyltransferases from plants were introduced in E. coli BL21 (DE3) to probe the bioconversion of fisetin, a medicinally important polyphenol produced by various plants. As a result, approximately 1.178 g of fisetin 3-O-glucoside and 1.026 g of fisetin 3-O-rhamnoside were produced in UDP-glucose and TDP-rhamnose biosynthesis systems respectively, after 48 h of incubation in 3 L fermentor while supplementing 0.9 g of fisetin. These yields of fisetin glycosides represent ~99% of bioconversion of exogenously supplemented fisetin. The systems were also found to be highly effective in bio-transforming other flavonols (quercetin, kaempferol, myricetin) into their respective glycosides, achieving over 95% substrate conversion. CONCLUSION: The construction of a synthetic expression vector for bacterial cell factory followed by subsequent re-direction of metabolic flux towards desirable products have always been revolutionized the biotechnological processes and technologies. This multi-monocistronic synthetic vector in a microbial platform is customizable to defined task and would certainly be useful for applications in producing and modifying such therapeutically valued plant secondary metabolites.


Assuntos
Escherichia coli/metabolismo , Flavonóis/metabolismo , Glicosídeos/metabolismo , Glicosiltransferases/genética
19.
World J Microbiol Biotechnol ; 31(4): 611-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25663173

RESUMO

Glycosyltransferase from Bacillus licheniformis DSM13 (YjiC) was used for enzymatic modification of emodin and aloe-emodin in vitro and in vivo. In order to increase the availability of UDP-glucose, three genes involved in the production of precursors of NDP-sugar in Escherichia coli BL21 (DE3) viz. D-glucose phosphate isomerase (pgi), D-glucose-6-phosphate dehydrogenase (zwf), and UDP-sugar hydrolase (ushA) were deleted and glucose-1-phosphate urididyltransferase (galU) gene was over expressed. To improve the yield of the products; substrate, time and media parameters were optimized, and the production was scaled up using a 3 L fermentor. The maximum yield of glycosylated products of emodin (emodin-O-ß-D-glucoside) and aloe-emodin (aloe-emodin-O-ß-D-glucoside) were approximately 144 µM (38 mg/L) and 168 µM (45 mg/L) respectively, representing almost 72 % and 84 % bioconversion of emodin and aloe-emodin when 200 µM of emodin and aloe-emodin were supplemented in the culture. Additionally, the emodin and aloe emodin major glycosylated products exhibited the highest stability at pH 8.0 and the stability of products was up to 70 °C and 60 °C respectively. Furthermore, the biological activities of emodin and its major glucoside (P1) were compared and their anti-cancer activities were assayed in several cancer cell lines. The results demonstrate that YjiC has the capacity to catalyze the glycosylation of these aromatic compounds and that glycosylation of anthraquinones enhances their aqueous solubility while retaining their biological activities.


Assuntos
Antraquinonas/metabolismo , Emodina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Aloe/metabolismo , Glicosilação
20.
Appl Environ Microbiol ; 80(23): 7235-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239890

RESUMO

A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-ß-d-glucoside, resveratrol 4'-O-ß-d-glucoside, resveratrol 3,5-O-ß-d-diglucoside, and resveratrol 3,5,4'-O-ß-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-ß-d-2-deoxyglucoside and resveratrol 3,5-O-ß-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4'-O-ß-d-galactoside, resveratrol 4'-O-ß-d-viosaminoside, resveratrol 3-O-ß-l-rhamnoside, and resveratrol 3-O-ß-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.


Assuntos
Bacillus/enzimologia , Glucuronosiltransferase/metabolismo , Glicosídeos/metabolismo , Estilbenos/metabolismo , Bacillus/genética , Carboidratos/análise , Clonagem Molecular , Citosol/química , Expressão Gênica , Glucuronosiltransferase/genética , Glucuronosiltransferase/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA