Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Environ Manage ; 351: 119768, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100858

RESUMO

The most common type of environmental contamination is petroleum hydrocarbons. Sustainable and environmentally friendly treatment strategies must be explored in light of the increasing challenges of toxic and critical wastewater contamination. This paper deals with the bacteria-producing biosurfactant and their employment in the bioremediation of hydrocarbon-containing waste through a microbial fuel cell (MFC) with Pseudomonas aeruginosa (exoelectrogen) as co-culture for simultaneous power generation. Staphylococcus aureus is isolated from hydrocarbon-contaminated soil and is effective in hydrocarbon degradation by utilizing hydrocarbon (engine oil) as the only carbon source. The biosurfactant was purified using silica-gel column chromatography and characterised through FTIR and GCMS, which showed its glycolipid nature. The isolated strains are later employed in the MFCs for the degradation of the hydrocarbon and power production simultaneously which has shown a power density of 6.4 W/m3 with a 93% engine oil degradation rate. A biogenic Fe2O3 nanoparticle (NP) was synthesized using Bambusa arundinacea shoot extract for anode modification. It increased the power output by 37% and gave the power density of 10.2 W/m3. Thus, simultaneous hydrocarbon bioremediation from oil-contamination and energy recovery can be achieved effectively in MFC with modified anode.


Assuntos
Fontes de Energia Bioelétrica , Petróleo , Biodegradação Ambiental , Técnicas de Cocultura , Bactérias/metabolismo , Petróleo/análise , Hidrocarbonetos/química , Eletrodos
2.
Arch Microbiol ; 205(1): 54, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602609

RESUMO

The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.


Assuntos
Antibacterianos , Biofilmes , Antibacterianos/farmacologia , Desenho de Fármacos
3.
Appl Microbiol Biotechnol ; 107(1): 459-472, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36418541

RESUMO

Microbial fuel cells (MFCs) have gained attention due to their applications in the energy and environmental sectors. However, several challenges must be addressed in order to operate MFCs in the real world. Cathode biofouling, which poses mass transfer limitations, is a major factor behind poor performance of MFCs. In this study, a water-insoluble pyridine-2-carbaldehyde thiosemicarbazone (PCT) was synthesized and its efficiency as anti-biofouling agent in the cathode of a multi-criteria MFC (MCMFC) was tested. For the application of PCT, graphite dust and MnO2 nanotubes (NTs) were used as conducting support and oxygen reduction reaction (ORR) catalyst. When the concentration of PCT on the cathode was increased, an increase in the power generation was observed. The PCT loading of 0.05, 0.1, 0.2, and 0.4 mg/cm2 on graphite-MnO2-NTs cathode, resulted in maximum power density of 356.8, 390.93, 418.77, and 434.2 mW/m2, respectively. Half-cell polarization and electrochemical impedance study revealed that the mechanically mixed PCT-MnO2-NTs/graphite dust composite has a higher ORR activity than MnO2-NTs/graphite dust composite, implying that the dispersion of PCT on the cathode surface improves its catalytic activity, possibly due to the antibacterial activity of PCT. PCT played an important role in improved energy recovery and could be applied as an efficient antifouling agent and cathode catalyst for the MFC. KEY POINTS: • Water-insoluble pyridine-2-carbaldehyde thiosemicarbazone (PCT) was synthesized. • A multi-criteria microbial fuel cell (MCMFC) was designed. • PCT was used as an oxygen reduction reaction catalyst in MCMFC.


Assuntos
Fontes de Energia Bioelétrica , Incrustação Biológica , Grafite , Tiossemicarbazonas , Fontes de Energia Bioelétrica/microbiologia , Incrustação Biológica/prevenção & controle , Compostos de Manganês , Óxidos , Eletrodos , Catálise , Oxigênio , Água , Poeira
4.
Environ Sci Technol ; 51(17): 10022-10030, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28741939

RESUMO

Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.


Assuntos
Incrustação Biológica , Eletrodos , Carbono , Eletricidade , Grafite , Purificação da Água
5.
Water Sci Technol ; 72(1): 106-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114278

RESUMO

An electrochemically active bacteria Pseudomonas aeruginosa IIT BT SS1 was isolated from a dark fermentative spent media fed anode, and a bioaugmentation technique using the isolated strain was used to improve the start-up time of a microbial fuel cell (MFC). Higher volumetric current density and lower start-up time were observed with the augmented system MFC-PM (13.7 A/m(3)) when compared with mixed culture MFC-M (8.72 A/m(3)) during the initial phase. This enhanced performance in MFC-PM was possibly due to the improvement in electron transfer ability by the augmented strain. However, pure culture MFC-P showed maximum volumetric current density (17 A/m(3)) due to the inherent electrogenic properties of Pseudomonas sp. An electrochemical impedance spectroscopic (EIS) study, along with matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) analysis, supported the influence of isolated species in improving the MFC performance. The present study indicates that the bioaugmentation strategy using the isolated Pseudomonas sp. can be effectively utilized to decrease the start-up time of MFC.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletrodos/microbiologia , Pseudomonas aeruginosa/metabolismo , Meios de Cultura/química , Transporte de Elétrons , Oxirredução , Filogenia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Fatores de Tempo
6.
Microbiol Res ; 285: 127765, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805980

RESUMO

The growing biotechnology industry has focused a lot of attention on biosurfactants because of several advantages over synthetic surfactants. These benefits include worldwide public health, environmental sustainability, and the increasing demand from sectors for environmentally friendly products. Replacement with biosurfactants can reduce upto 8% lifetime CO2 emissions avoiding about 1.5 million tons of greenhouse gas released into the atmosphere. Therefore, the demand for biosurfactants has risen sharply occupying about 10% (∼10 million tons/year) of the world production of surfactants. Biosurfactants' distinct amphipathic structure, which is made up of both hydrophilic and hydrophobic components, enables these molecules to perform essential functions in emulsification, foam formation, detergency, and oil dispersion-all of which are highly valued characteristic in a variety of sectors. Today, a variety of biosurfactants are manufactured on a commercial scale for use in the food, petroleum, and agricultural industries, as well as the pharmaceutical and cosmetic industries. We provide a thorough analysis of the body of knowledge on microbial biosurfactants that has been gained over time in this research. We also discuss the benefits and obstacles that need to be overcome for the effective development and use of biosurfactants, as well as their present and future industrial uses.


Assuntos
Bactérias , Biotecnologia , Tensoativos , Tensoativos/metabolismo , Tensoativos/química , Biotecnologia/métodos , Bactérias/metabolismo , Microbiologia Industrial/métodos , Interações Hidrofóbicas e Hidrofílicas
7.
ACS Appl Bio Mater ; 7(5): 2604-2619, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38622845

RESUMO

Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.


Assuntos
Antibacterianos , Biofilmes , Carbono , Biofilmes/efeitos dos fármacos , Carbono/química , Carbono/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Próteses e Implantes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Pontos Quânticos/química , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Teste de Materiais , Equipamentos e Provisões/microbiologia
8.
Chemosphere ; 352: 141341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307327

RESUMO

Granular activated carbon (GAC) has been widely used at the anode of a microbial fuel cell (MFC) to enhance anode performance due to its outstanding capacitance property. To the best of our knowledge, there haven't been any studies on GAC in the cathode for biofilm development and nitrate reduction in MFC. In this study, by adding GAC to biocathode, we investigated the impact of different GAC amounts and stirring speeds on power generation and nitrate reduction rate in MFC. The denitrification rate was found to be nearly two-times higher in MFCs with GAC (0.046 ± 0.0016 kg m-3 d-1) compared to that deprived of GAC (0.024 ± 0.0012 kg m-3 d-1). The electrotrophic denitrification has produced a maximum power density of 37.6 ± 4.8 mW m-2, which was further increased to 79.2 ± 7.4 mW m-2 with the amount of GAC in the biocathode. A comparative study performed with chemical catalyst (Pt carbon with air sparging) cathode and GAC biocathode showed that power densities produced with GAC biocathode were close to that with Pt cathode. Cyclic voltammetry analysis conducted at 10 mV s-1 between -0.9 V and +0.3 V (vs. Ag/AgCl) showed consistent reduction peaks at -0.6V (Ag/AgCl) confirming the reduction reaction in the biocathode. This demonstrates that the GAC biocathode used in this research is effective at producing power density and denitrification in MFC. Our belief that the nitrate reduction was caused by the GAC biocathode in MFC was further strengthened when SEM analysis showing bacterial aggregation and biofilm formation on the surface of GAC. The GAC biocathode system described in this research may be an excellent substitute for MFC's dual functions of current generation and nitrate reduction.


Assuntos
Fontes de Energia Bioelétrica , Nitratos/química , Carvão Vegetal , Desnitrificação , Compostos Orgânicos , Eletrodos
9.
Chemosphere ; 352: 141451, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368957

RESUMO

Plastics have a significant role in various sectors of the global economy since they are widely utilized in agriculture, architecture, and construction, as well as health and consumer goods. They play a crucial role in several industries as they are utilized in the production of diverse things such as defense materials, sanitary wares, tiles, plastic bottles, artificial leather, and various other household goods. Plastics are utilized in the packaging of food items, medications, detergents, and cosmetics. The overconsumption of plastics presents a significant peril to both the ecosystem and human existence on Earth. The accumulation of plastics on land and in the sea has sparked interest in finding ways to breakdown these polymers. It is necessary to employ suitable biodegradable techniques to decrease the accumulation of plastics in the environment. To address the environmental issues related to plastics, it is crucial to have a comprehensive understanding of the interaction between microorganisms and polymers. A wide range of creatures, particularly microbes, have developed techniques to survive and break down plastics. This review specifically examines the categorization of plastics based on their thermal and biodegradable properties, as well as the many types of degradation and biodegradation. It also discusses the various types of degradable plastics, the characterization of biodegradation, and the factors that influence the process of biodegradation. The plastic breakdown and bioremediation capabilities of these microbes make them ideal for green chemistry applications aimed at removing hazardous polymers from the ecosystem.


Assuntos
Ecossistema , Polímeros , Humanos , Polímeros/química , Biodegradação Ambiental , Embalagem de Produtos , Plásticos/química
10.
Sci Total Environ ; 916: 170142, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242458

RESUMO

A group of fluorinated organic molecules known as per- and poly-fluoroalkyl substances (PFAS) have been commonly produced and circulated in the environment. PFAS, owing to multiple strong CF bonds, exhibit exceptional stability and possess a high level of resistance against biological or chemical degradation. Recently, PFAS have been identified to cause numerous hazardous effects on the biotic ecosystem. As a result, extensive efforts have been made in recent years to develop effective methods to remove PFAS. Adsorption, filtration, heat treatment, chemical oxidation/reduction, and soil washing are a few of the physicochemical techniques that have shown their ability to remove PFAS from contaminated matrixes. However these methods also carry significant drawbacks, including the fact that they are expensive, energy-intensive, unsuitable for in-situ treatment, and requirement to be carried under dormant conditions. The metabolic products released upon PFAS degradation are largely unknown, despite the fact that thermal disintegration methods are widely used. In contrast to physical and chemical methods, biological degradation of PFAS has been regarded as efficient method. However, PFAS are difficult to instantly and completely metabolize through biological methods due to the limitations of biocatalytic mechanisms. Nevertheless, cost, easy-to-operate and environmentally safe are some of the advantages over its counterpart. The present review comprehensively discusses the occurrence of PFAS, the state-of-the science of remediation technologies and approaches applied, and the remediation challenges. The article also focuses on the future research directions toward the development of effective methods for PFAS-contaminated site in-situ treatment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Ecossistema , Adsorção , Biocatálise , Filtração
11.
Appl Biochem Biotechnol ; 196(3): 1712-1751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37410353

RESUMO

Contamination-free groundwater is considered a good source of potable water. Even in the twenty-first century, over 90 percent of the population is reliant on groundwater resources for their lives. Groundwater influences the economical state, industrial development, ecological system, and agricultural and global health conditions worldwide. However, different natural and artificial processes are gradually polluting groundwater and drinking water systems throughout the world. Toxic metalloids are one of the major sources that pollute the water system. In this review work, we have collected and analyzed information on metal-resistant bacteria along with their genetic information and remediation mechanisms of twenty different metal ions [arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), cadmium (Cd), palladium (Pd), zinc (Zn), cobalt (Co), antimony (Sb), gold (Au), silver (Ag), platinum (Pt), selenium (Se), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and uranium (U)]. We have surveyed the scientific information available on bacteria-mediated bioremediation of various metals and presented the data with responsible genes and proteins that contribute to bioremediation, bioaccumulation, and biosorption mechanisms. Knowledge of the genes responsible and self-defense mechanisms of diverse metal-resistance bacteria would help us to engineer processes involving multi-metal-resistant bacteria that may reduce metal toxicity in the environment.


Assuntos
Arsênio , Metais Pesados , Biodegradação Ambiental , Metais Pesados/toxicidade , Cromo , Cádmio , Bactérias/genética , Monitoramento Ambiental
12.
Appl Biochem Biotechnol ; 196(1): 491-505, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37145344

RESUMO

The current study reports the synthesis of sustainable nano-hydroxyapatite (nHAp) using a wet chemical precipitation approach. The materials used in the green synthesis of nHAp were obtained from environmental biowastes such as HAp from eggshells and pectin from banana peels. The physicochemical characterization of obtained nHAp was carried out using different techniques. For instance, X-ray diffractometer (XRD) and FTIR spectroscopy were used to study the crystallinity and synthesis of nHAp respectively. In addition, the morphology and elemental composition of nHAP were studied using FESEM equipped with EDX. HRTEM showed the internal structure of nHAP and calculated its grain size which was 64 nm. Furthermore, the prepared nHAp was explored for its antibacterial and antibiofilm activity which has received less attention previously. The obtained results showed the potential of pectin-bound nHAp as an antibacterial agent for various biomedical and healthcare applications.


Assuntos
Durapatita , Pectinas , Animais , Durapatita/química , Pectinas/farmacologia , Casca de Ovo , Antibacterianos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Artigo em Inglês | MEDLINE | ID: mdl-38573532

RESUMO

The microbial desalination cell (MDC) is a bio-electrochemical system that exhibits the ability to oxidize organic compounds, produce energy, and decrease the saline concentrations within the desalination chamber. The selective removal of ions from the desalination chamber is significantly influenced by the anion and cation exchange membranes. In this study, a three-chamber microbial desalination cell was developed to treat seawater using a synthesize Fe3O4 magnetite nanoparticle (MNP)-modified anode. The impact of different performance parameters, such as temperature, pH, and concentrations of NPs, has been investigated in order to assess the performance of three-chamber MDCs in terms of energy recovery and salt removal. The evaluation criteria of the system included multiple factors such as chemical oxygen demand (COD), Coulombic efficiency (CE), desalination efficiency, as well as system aspects including voltage generation and power density. The highest COD% removal efficiency was 74% at 37 °C, pH = 7, and 30 g/L salt concentration with an optimized NPs concentration of 2.0 mg/cm2 impregnated on anode. The maximum Coulombic efficiency was 10.3% with the maximum power density of 4.3 W/m3. The effect of the nanoparticle concentration impregnated on the anode was clarified by the primary factor of analysis. This research has revealed consistent patterns in the enhancement of voltage generation, COD, and Coulombic efficiencies when incorporating higher concentrations of nanoparticles on the anode at a certain point.

14.
Bioresour Technol ; 390: 129857, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852505

RESUMO

This study aimed to examine the microbial degradation of xylan through Bacillus sp. isolated from wastewater. Co-culture of Bacillus licheniformis strain and MTCC-8104 strain of Shewanella putrefaciens were employed in a microbial fuel cell (MFC) to facilitate energy production simultaneous xylan degradation under optimum conditions. Electrochemical properties of MFC and degradation analysis were used to validate xylan degradation throughout various experimental parameters. Degradation of the optimal xylan concentration using co-culture, resulting in a power density of 7.8 W/m3, the anode surface was modified with bamboo-derived biochar in order to increase power density under the same operational condition. Under optimum circumstances, increasing the anode's surface area boosted electron transport and electro-active biofilm growth, resulting in a higher power density of 12.9 W/m3. Co-culture of hydrolyzing and electro-active bacteria was found beneficial for xylan degradation and anode modifications enhance power output while microbial degradation.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Xilanos , Técnicas de Cocultura , Eletrodos , Eletricidade
15.
Environ Technol ; 44(1): 1-11, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34319858

RESUMO

The present study reports a detailed life cycle assessment and cost-benefit analysis of a commercially viable Internal-Stack-Trickling Bio-Electrochemical Reactor (IS-TrickBER). IS-TrickBER used wastewater as a feedstock and converted that wastewater through electrochemical methods into low-grade fertilizer and produced electricity. IS-TrickBER was observed for its performance in terms of power output and wastewater treatment. IS-TrickBER exhibited up to 4.2 Wh net energy yield while treating 84.84L wastewater per day along with 92.17% COD removal and 38.23% Columbic efficiency during the operational run with real municipal wastewater. Based on daily net energy yield, up to 1457.6Wh yearly net energy yield can be expected. A comprehensive start-to-end life cycle assessment study associated with the manufacturing, and operational phases of IS-TrickBER was also conducted to ascertain its impact on the environment. The environmental impact through air emissions during the manufacturing stage can be minimized by changing the plastic balls used as packing material in the reactor. A detailed cost-benefit analysis was also conducted to understand its economic viability. Cost-benefit analysis of IS-TrickBER, based on net energy yield, shows that IS-TrickBER could compensate its installation cost within a few years. IS-TrickBER performed well in eliminating the chemical load of wastewater and simultaneous electricity generation. Due to its scalability, compactness, and low maintenance, IS-TrickBER can be a suitable candidate in real-time wastewater treatment.


Assuntos
Águas Residuárias , Purificação da Água , Animais , Análise Custo-Benefício , Eletricidade , Purificação da Água/métodos , Estágios do Ciclo de Vida , Eliminação de Resíduos Líquidos/métodos
16.
Environ Technol ; : 1-24, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491760

RESUMO

Bioelectrochemical systems (BES) have emerged as a sustainable and highly promising technology that has garnered significant attention from researchers worldwide. These systems provide an efficient platform for the removal and recovery of valuable products from wastewater, with minimal or no net energy loss. Among the various types of BES, microbial fuel cells (MFCs) are a notable example, utilizing microbial biocatalytic activities to generate electrical energy through the degradation of organic matter. Other BES variants include microbial desalination cells (MDCs), microbial electrolysis cells (MECs), microbial electrosynthesis cells (MXCs), microbial solar cells (MSCs), and more. BESs have demonstrated remarkable potential in the recovery of diverse products such as hydrogen, methane, volatile fatty acids, precious nutrients, and metals. Recent advancements in scaling up BESs have facilitated a more realistic assessment of their net energy recovery and resource yield in real-world applications. This comprehensive review focuses on the practical applications of BESs, from laboratory-scale developments to their potential for industrial commercialization. Specifically, it highlights successful examples of value-added product recovery achieved through various BES configurations. Additionally, this review critically evaluates the limitations of BESs and provides suggestions to enhance their performance at a larger scale, enabling effective implementation in real-world scenarios. By providing a thorough analysis of the current state of BES technology, this review aims to emphasize the tremendous potential of these systems for sustainable wastewater treatment and resource recovery. It underscores the significance of bridging the gap between laboratory-scale achievements and industrial implementation, paving the way for a more sustainable and resource-efficient future.

17.
Bioresour Technol ; 370: 128505, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572159

RESUMO

The present study delves into phototrophic cyanobacterial biomass production by concomitant CO2 sequestration, selecting an effective pretreatment condition followed by using this as feedstock for green fuel or bioelectricity production by Microbial Fuel Cells (MFC). The performance of the various photobioreactors were put up against Anabaena sp. PCC 7120 biomass production. Maximum microalgal biomass of 1.15 gL-1 was attained in an airlift bioreactor for 9 days under a light intensity of 100 µEm-2s-1. Pretreatment methods like sonication, HCl acid, and H2O2 treatment (2 % vv-1) were applied to digest harvested biomass. Higher power output (6.76 Wm-3) was attained, and 73.5 % COD was eliminated using 2 % (vv-1) acid pre-treated biomass. Better results were obtained using acid pre-treated biomass because the conductivity of the anolyte increased with the neutralization of acid-pre-treated biomass. The results demonstrate that cyanobacterial biomass could be employed successfully as a renewable resource for green fuel generation in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Cianobactérias , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Biocombustíveis , Biomassa , Peróxido de Hidrogênio , Fotobiorreatores
18.
Appl Biochem Biotechnol ; 195(9): 5439-5457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35793059

RESUMO

The enzyme endoglucanase is responsible for the depolymerization of cellulose. This study focuses on characterization and purification of endoglucanase from Rhizopus oryzae MTCC 9642 through a simple size exclusion method and its effective application as an antibiofilm agent. Extracellular ß-1,4-endoglucanase, an enzyme that catalyzes the hydrolysis of carboxymethyl cellulose, was found to be synthesized by Rhizopus oryzae MTCC 9642. The enzyme was purified up to homogeneity simply by size exclusion process through ultrafiltration and gel chromatography. The molecular weight of purified enzyme protein was estimated to be 39.8 kDa and it showed the highest substrate affinity towards carboxymethyl-cellulose with Km and Vmax values of 0.833 mg ml-1 and of 0.33 mmol glucose min-1 mg-1protein, respectively. The purified enzyme exhibited optimal activity at pH 6 with a broad stability range of pH 3-8. The most preferred temperature was 35 °C and 50% of activity could be retained after the thermal exposure at 40 °C for 25 min. The purified enzyme protein was inactivated by Cu2+, while the activity could be enhanced by the addition of exogenous thiols. Since biofilm is a challenge for health sector, with the aim of eradicating the biofilm, the purified endoglucanase was used to remove biofilm produced by two nosocomial bacteria. As predicted by in silico molecular docking interaction, the purified enzyme could effectively degrade biofilm architecture of bacterial strains S. aureus and P. aeruginosa by 76.52 ± 6.52% and 61.67 ± 8.76%, respectively. The properties of purified enzyme protein, as elucidated by in vitro and in silico characterization, may be favourable for its commercial applications as a potent antibiofilm agent.


Assuntos
Celulase , Rhizopus oryzae , Celulase/metabolismo , Simulação de Acoplamento Molecular , Staphylococcus aureus , Temperatura , Celulose/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Especificidade por Substrato , Rhizopus/metabolismo
19.
Membranes (Basel) ; 13(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36676862

RESUMO

The current study investigated the development and application of lithium (Li)-doped zinc oxide (ZnO)-impregnated polyvinyl alcohol (PVA) proton exchange membrane separator in a single chambered microbial fuel cell (MFC). Physiochemical analysis was performed via FT-IR, XRD, TEM, and AC impedance analysis to characterize thus synthesized Li-doped ZnO. PVA-ZnO-Li with 2.0% Li incorporation showed higher power generation in MFC. Using coulombic efficiency and current density, the impact of oxygen crossing on the membrane cathode assembly (MCA) area was evaluated. Different amounts of Li were incorporated into the membrane to optimize its electrochemical behavior and to increase proton conductivity while reducing biofouling. When acetate wastewater was treated in MFC using a PVA-ZnO-Li-based MCA, the maximum power density of 6.3 W/m3 was achieved. These observations strongly support our hypothesis that PVA-ZnO-Li can be an efficient and affordable separator for MFC.

20.
Appl Biochem Biotechnol ; 195(5): 3508-3531, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877442

RESUMO

The sustainable development of human society in today's high-tech world depends on some form of eco-friendly energy source because existing technologies cannot keep up with the rapid population expansion and the vast amounts of wastewater that result from human activity. A green technology called a microbial fuel cell (MFC) focuses on using biodegradable trash as a substrate to harness the power of bacteria to produce bioenergy. Production of bioenergy and wastewater treatment are the two main uses of MFC. MFCs have also been used in biosensors, water desalination, polluted soil remediation, and the manufacture of chemicals like methane and formate. MFC-based biosensors have gained a lot of attention in the last few decades due to their straightforward operating principle and long-term viability, with a wide range of applications including bioenergy production, treatment of industrial and domestic wastewater, biological oxygen demand, toxicity detection, microbial activity detection, and air quality monitoring, etc. This review focuses on several MFC types and their functions, including the detection of microbial activity.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Humanos , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Água , Eletricidade , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA