Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 462(7273): 595-601, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19898493

RESUMO

Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be achieved by overexpression of Oct4, Sox2, Klf4 and c-Myc transcription factors, but only a minority of donor somatic cells can be reprogrammed to pluripotency. Here we demonstrate that reprogramming by these transcription factors is a continuous stochastic process where almost all mouse donor cells eventually give rise to iPS cells on continued growth and transcription factor expression. Additional inhibition of the p53/p21 pathway or overexpression of Lin28 increased the cell division rate and resulted in an accelerated kinetics of iPS cell formation that was directly proportional to the increase in cell proliferation. In contrast, Nanog overexpression accelerated reprogramming in a predominantly cell-division-rate-independent manner. Quantitative analyses define distinct cell-division-rate-dependent and -independent modes for accelerating the stochastic course of reprogramming, and suggest that the number of cell divisions is a key parameter driving epigenetic reprogramming to pluripotency.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Divisão Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos SCID , Modelos Biológicos , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Curr Opin Genet Dev ; 20(6): 613-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20947336

RESUMO

Understanding how different cellular subsystems are coupled to each other is a fundamental question in the quest for reliably predicting the dynamic state of a cell. Coupling of oscillatory subsystems is especially interesting as dynamic interactions play an important role in cell physiology. Here we review recent efforts that investigate and quantify the coupling between the circadian and cell cycle clocks in cyanobacteria as a model system. We discuss studies that quantify the coupling from a systems point of view in which the oscillators are described in abstract terms. We also emphasize recent developments aimed at uncovering the molecular details underlying the coupling between these systems. Finally we review recent studies that describe a potentially more overarching regulation scheme through global circadian regulation of DNA packing and gene expression.


Assuntos
Divisão Celular , Ritmo Circadiano , Cianobactérias/citologia , Cianobactérias/fisiologia , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica
3.
Science ; 327(5972): 1522-6, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20299597

RESUMO

Although major progress has been made in uncovering the machinery that underlies individual biological clocks, much less is known about how multiple clocks coordinate their oscillations. We simultaneously tracked cell division events and circadian phases of individual cells of the cyanobacterium Synechococcus elongatus and fit the data to a model to determine when cell cycle progression slows as a function of circadian and cell cycle phases. We infer that cell cycle progression in cyanobacteria slows during a specific circadian interval but is uniform across cell cycle phases. Our model is applicable to the quantification of the coupling between biological oscillators in other organisms.


Assuntos
Relógios Biológicos , Ciclo Celular , Ritmo Circadiano , Synechococcus/citologia , Synechococcus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Simulação por Computador , Luz , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Método de Monte Carlo , Synechococcus/genética , Synechococcus/metabolismo
4.
Science ; 329(5999): 1656-60, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20929850

RESUMO

Coping with variations in network dosage is crucial for maintaining optimal function in gene networks. We explored how network structure facilitates network-level dosage compensation. By using the yeast galactose network as a model, we combinatorially deleted one of the two copies of its four regulatory genes and found that network activity was robust to the change in network dosage. A mathematical analysis revealed that a two-component genetic circuit with elements of opposite regulatory activity (activator and inhibitor) constitutes a minimal requirement for network-dosage invariance. Specific interaction topologies and a one-to-one interaction stoichiometry between the activating and inhibiting agents were additional essential elements facilitating dosage invariance. This mechanism of network-dosage invariance could represent a general design for gene network structure in cells.


Assuntos
Proteínas de Ligação a DNA/genética , Mecanismo Genético de Compensação de Dose , Galactose/metabolismo , Redes Reguladoras de Genes , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reguladores , Modelos Genéticos , Proteínas de Transporte de Monossacarídeos/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 103(14): 5338-42, 2006 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-16569700

RESUMO

In many cell-signaling pathways, information is transmitted by the diffusion of messenger molecules. Diffusion coefficients characterize the messenger's spatial range and the characteristic times of signal propagation. Inside cells, particles usually diffuse in the presence of immobile binding sites (or traps). It is well known that binding to traps results in an effective diffusion coefficient that is smaller than the free coefficient in media free of traps. To measure effective diffusion coefficients in cells, "tagged" particles are often used. Radioactive calcium was used in a giant squid axon and in cytosolic extracts of Xenopus laevis oocytes. Fluorescence recovery after photobleaching yields diffusion coefficients from observations of the distribution of fluorescently labeled proteins. In the absence of traps, free diffusion coefficients give both the rate at which single-particle mean square displacements increase and the rate at which information in the form of inhomogeneities in particle concentration spread out with time. We show here that, in the presence of traps, information diffuses faster than single particles. Thus, messages diffuse faster than messengers. Tagged-particle experiments give the single-particle diffusion coefficients and, thus, can underestimate the rate of diffusive signal propagation.


Assuntos
Transdução de Sinais , Animais , Fluorescência , Xenopus laevis
6.
Biophys J ; 90(11): 3897-907, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16533853

RESUMO

Puffs are localized Ca(2+) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP(3)). They are analogous to the sparks of myocytes and are believed to be the result of the liberation of Ca(2+) from the endoplasmic reticulum through the coordinated opening of IP(3) receptor/channels clustered at a functional release site. In this article, we analyze sequences of puffs that occur at the same site to help elucidate the mechanisms underlying puff dynamics. In particular, we show a dependence of the interpuff time on the amplitude of the preceding puff, and of the amplitude of the following puff on the preceding interval. These relationships can be accounted for by an inhibitory role of the Ca(2+) that is liberated during puffs. We construct a stochastic model for a cluster of IP(3) receptor/channels that quantitatively replicates the observed behavior, and we determine that the characteristic time for a channel to escape from the inhibitory state is of the order of seconds.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/fisiologia , Modelos Biológicos , Animais , Sítios de Ligação , Canais de Cálcio/química , Canais de Cálcio/fisiologia , Citosol/metabolismo , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato , Microscopia Confocal , Oócitos/fisiologia , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/fisiologia , Distribuições Estatísticas , Processos Estocásticos , Xenopus laevis
7.
Phys Rev Lett ; 91(25): 258101, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14754160

RESUMO

In the Xenopus laevis oocyte, calcium ion channels are clustered in a thin shell. Motivated by this morphology, we study a general class of reaction-diffusion systems that include most of the well-known models that support wave propagation but restricting excitability to a "sheet" of codimension 1. We find waves that undergo propagation failure with increasing diffusion coefficient and a scaling regime in which the wave speed is independent of it.


Assuntos
Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Modelos Biológicos , Animais , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA