Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890700

RESUMO

To meet the high demand for supporting and accelerating progress in the breeding of novel traits, plant scientists and breeders have to measure a large number of plants and their characteristics accurately. Imaging methodologies are being deployed to acquire data for quantitative studies of complex traits. Images are not always good quality, in particular, they are obtained from the field. Image fusion techniques can be helpful for plant breeders with more comfortable access plant characteristics by improving the definition and resolution of color images. In this work, the multi-focus images were loaded and then the similarity of visual saliency, gradient, and color distortion were measured to obtain weight maps. The maps were refined by a modified guided filter before the images were reconstructed. Canola images were obtained by a custom built mobile platform for field phenotyping and were used for testing in public databases. The proposed method was also tested against the five common image fusion methods in terms of quality and speed. Experimental results show good re-constructed images subjectively and objectively performed by the proposed technique. The findings contribute to a new multi-focus image fusion that exhibits a competitive performance and outperforms some other state-of-the-art methods based on the visual saliency maps and gradient domain fast guided filter. The proposed fusing technique can be extended to other fields, such as remote sensing and medical image fusion applications.

2.
Front Artif Intell ; 6: 1203546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795496

RESUMO

The increasing human population and variable weather conditions, due to climate change, pose a threat to the world's food security. To improve global food security, we need to provide breeders with tools to develop crop cultivars that are more resilient to extreme weather conditions and provide growers with tools to more effectively manage biotic and abiotic stresses in their crops. Plant phenotyping, the measurement of a plant's structural and functional characteristics, has the potential to inform, improve and accelerate both breeders' selections and growers' management decisions. To improve the speed, reliability and scale of plant phenotyping procedures, many researchers have adopted deep learning methods to estimate phenotypic information from images of plants and crops. Despite the successful results of these image-based phenotyping studies, the representations learned by deep learning models remain difficult to interpret, understand, and explain. For this reason, deep learning models are still considered to be black boxes. Explainable AI (XAI) is a promising approach for opening the deep learning model's black box and providing plant scientists with image-based phenotypic information that is interpretable and trustworthy. Although various fields of study have adopted XAI to advance their understanding of deep learning models, it has yet to be well-studied in the context of plant phenotyping research. In this review article, we reviewed existing XAI studies in plant shoot phenotyping, as well as related domains, to help plant researchers understand the benefits of XAI and make it easier for them to integrate XAI into their future studies. An elucidation of the representations within a deep learning model can help researchers explain the model's decisions, relate the features detected by the model to the underlying plant physiology, and enhance the trustworthiness of image-based phenotypic information used in food production systems.

3.
Plant Phenomics ; 5: 0097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780968

RESUMO

Nutrient-efficient root system architecture (RSA) is becoming an important breeding objective for generating crop varieties with improved nutrient and water acquisition efficiency. Genetic variants shaping soybean RSA is key in improving nutrient and water acquisition. Here, we report on the use of an improved 2-dimensional high-throughput root phenotyping platform that minimizes background noise by imaging pouch-grown root systems submerged in water. We also developed a background image cleaning Python pipeline that computationally removes images of small pieces of debris and filter paper fibers, which can be erroneously quantified as root tips. This platform was used to phenotype root traits in 286 soybean lines genotyped with 5.4 million single-nucleotide polymorphisms. There was a substantially higher correlation in manually counted number of root tips with computationally quantified root tips (95% correlation), when the background was cleaned of nonroot materials compared to root images without the background corrected (79%). Improvements in our RSA phenotyping pipeline significantly reduced overestimation of the root traits influenced by the number of root tips. Genome-wide association studies conducted on the root phenotypic data and quantitative gene expression analysis of candidate genes resulted in the identification of 3 putative positive regulators of root system depth, total root length and surface area, and root system volume and surface area of thicker roots (DOF1-like zinc finger transcription factor, protein of unknown function, and C2H2 zinc finger protein). We also identified a putative negative regulator (gibberellin 20 oxidase 3) of the total number of lateral roots.

4.
aBIOTECH ; 4(4): 315-331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106432

RESUMO

Root system architecture (RSA) plays a pivotal role in efficient uptake of essential nutrients, such as phosphorous (P), nitrogen (N), and water. In soils with heterogeneous nutrient distribution, root plasticity can optimize acquisition and plant growth. Here, we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions. Our studies, using P efficient SC103 and inefficient BTx635 sorghum cultivars, identified significant differences in root traits, with SC103 developing a larger root system with more and longer lateral roots, and enhanced shoot biomass, under both nutrient sufficient and deficient conditions. In addition to this constitutive attribute, under P deficiency, both cultivars exhibited an initial increase in lateral root development; however, SC103 still maintained the larger root biomass. Although N deficiency and drought stress inhibited both root and shoot growth, for both sorghum cultivars, SC103 again maintained the better performance. These findings reveal that SC103, a P efficient sorghum cultivar, also exhibited enhanced growth performance under N deficiency and drought. Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient- and drought-resilient crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00112-w.

5.
Sci Rep ; 12(1): 16563, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195610

RESUMO

Accurate segmentation of root system architecture (RSA) from 2D images is an important step in studying phenotypic traits of root systems. Various approaches to image segmentation exist but many of them are not well suited to the thin and reticulated structures characteristic of root systems. The findings presented here describe an approach to RSA segmentation that takes advantage of the inherent structural properties of the root system, a segmentation network architecture we call ITErRoot. We have also generated a novel 2D root image dataset which utilizes an annotation tool developed for producing high quality ground truth segmentation of root systems. Our approach makes use of an iterative neural network architecture to leverage the thin and highly branched properties of root systems for accurate segmentation. Rigorous analysis of model properties was carried out to obtain a high-quality model for 2D root segmentation. Results show a significant improvement over other recent approaches to root segmentation. Validation results show that the model generalizes to plant species with fine and highly branched RSA's, and performs particularly well in the presence of non-root objects.


Assuntos
Processamento de Imagem Assistida por Computador , Raízes de Plantas , Processamento de Imagem Assistida por Computador/métodos , Fenótipo , Plantas
6.
Front Plant Sci ; 10: 147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815008

RESUMO

The ever-growing world population brings the challenge for food security in the current world. The gene modification tools have opened a new era for fast-paced research on new crop identification and development. However, the bottleneck in the plant phenotyping technology restricts the alignment in geno-pheno development as phenotyping is the key for the identification of potential crop for improved yield and resistance to the changing environment. Various attempts to making the plant phenotyping a "high-throughput" have been made while utilizing the existing sensors and technology. However, the demand for 'good' phenotypic information for linkage to the genome in understanding the gene-environment interactions is still a bottleneck in the plant phenotyping technologies. Moreover, the available technologies and instruments are inaccessible, expensive, and sometimes bulky. This work attempts to address some of the critical problems, such as exploration and development of a low-cost LiDAR-based platform for phenotyping the plants in-lab and in-field. A low-cost LiDAR-based system design, LiDARPheno, is introduced in this work to assess the feasibility of the inexpensive LiDAR sensor in the leaf trait (length, width, and area) extraction. A detailed design of the LiDARPheno, based on low-cost and off-the-shelf components and modules, is presented. Moreover, the design of the firmware to control the hardware setup of the system and the user-level python-based script for data acquisition is proposed. The software part of the system utilizes the publicly available libraries and Application Programming Interfaces (APIs), making it easy to implement the system by a non-technical user. The LiDAR data analysis methods are presented, and algorithms for processing the data and extracting the leaf traits are developed. The processing includes conversion, cleaning/filtering, segmentation and trait extraction from the LiDAR data. Experiments on indoor plants and canola plants were performed for the development and validation of the methods for estimation of the leaf traits. The results of the LiDARPheno based trait extraction are compared with the SICK LMS400 (a commercial 2D LiDAR) to assess the performance of the developed system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA