Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1266332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046950

RESUMO

Introduction: Recent views posit that precise control of the interceptive timing can be achieved by combining on-line processing of visual information with predictions based on prior experience. Indeed, for interception of free-falling objects under gravity's effects, experimental evidence shows that time-to-contact predictions can be derived from an internal gravity representation in the vestibular cortex. However, whether the internal gravity model is fully engaged at the target motion outset or reinforced by visual motion processing at later stages of motion is not yet clear. Moreover, there is no conclusive evidence about the relative contribution of internalized gravity and optical information in determining the time-to-contact estimates. Methods: We sought to gain insight on this issue by asking 32 participants to intercept free falling objects approaching directly from above in virtual reality. Object motion had durations comprised between 800 and 1100 ms and it could be either congruent with gravity (1 g accelerated motion) or not (constant velocity or -1 g decelerated motion). We analyzed accuracy and precision of the interceptive responses, and fitted them to Bayesian regression models, which included predictors related to the recruitment of a priori gravity information at different times during the target motion, as well as based on available optical information. Results: Consistent with the use of internalized gravity information, interception accuracy and precision were significantly higher with 1 g motion. Moreover, Bayesian regression indicated that interceptive responses were predicted very closely by assuming engagement of the gravity prior 450 ms after the motion onset, and that adding a predictor related to on-line processing of optical information improved only slightly the model predictive power. Discussion: Thus, engagement of a priori gravity information depended critically on the processing of the first 450 ms of visual motion information, exerting a predominant influence on the interceptive timing, compared to continuously available optical information. Finally, these results may support a parallel processing scheme for the control of interceptive timing.

2.
IEEE Trans Haptics ; 13(4): 761-776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31944997

RESUMO

Walking is an essential activity for a healthy life, which becomes less tiring and more enjoyable if done together. Common difficulties we have in performing sufficient physical exercise, for instance the lack of motivation, can be overcome by exploiting its social aspect. However, our lifestyle sometimes makes it very difficult to find time together with others who live far away from us to go for a walk. In this article, we propose a novel system enabling people to have a 'remote social walk' by streaming the gait cadence between two persons walking in different places, increasing the sense of mutual presence. Vibrations provided at the users' ankles display the partner's sensation perceived during the heel-strike. In order to achieve the aforementioned goal in a two users experiment, we envisaged a four-step incremental validation process: i) a single walker has to adapt the cadence with a virtual reference generated by a software; ii) a single user is tasked to follow a predefined time-varying gait cadence; iii) a leader-follower scenario in which the haptic actuation is mono-directional; iv) a peer-to-peer case with bi-directional haptic communication. Careful experimental validation was conducted involving a total of 50 participants, which confirmed the efficacy of our system in perceiving the partners' gait cadence in each of the proposed scenarios.


Assuntos
Caminhada , Dispositivos Eletrônicos Vestíveis , Marcha , Humanos
3.
IEEE Access ; 8: 139033-139043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34812343

RESUMO

The alarming morbidity of COVID-19 has drawn the attention to the social role of hygiene rules, with a particular focus on the importance of limiting face-touch occurrences. To deal with this aspect, we present No Face-Touch, a system able to estimate hand proximity to face and notify the user whenever a face-touch movement is detected. In its complete setup, the system consists of an application running on the smartwatch and a wearable accessory. Its ease of implementation allows this solution to be ready-to-use and large-scale deployable. We developed two gesture detection approaches compatible with sensors embedded in recent smartwatches, i.e. inertial and magnetic sensors. After preliminary tests to tune target gesture parameters, we tested the two approaches and compared their accuracy. The final phase of this project consisted in exploiting the most robust approach in a daily living scenario during a 6-days campaign. Experimental results revealed the effectiveness of the proposed system, demonstrating its impact in reducing the number of face-touches and their duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA