Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 26(3): 663-674, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36752864

RESUMO

The present research investigated whether accidental contact through stinging with honeybees, wasps, and hornets could represent a microbial hazard for humans. It has been previously suggested that such contact may transmit pathogens causing infections that could even be fatal for some susceptible individuals. Stinging simulation experiments were performed in the lab with live insects collected from the environment in Lemnos Island (north-eastern Greece), while different selective agar media targeting some clinically important bacteria (i.e., Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis/faecium, and Pseudomonas aeruginosa) were used as substrates for microbial recovery and identification. Results revealed none of the target pathogenic bacterial species in the honeybee samples, with bacilli, staphylococci, and micrococci dominating their surveyed microbiota. However, most of the suspect colonies isolated from wasps and hornets belonged to important hygienic indicators (i.e., enterococci, Proteus mirabilis, and coliforms), implying possible contact of these insects with fecal origin materials. To sum up, the microbiota that may be transmitted to humans through stinging appears to differ between honeybees and wasps/hornets, while the isolation from the latter samples of some other important opportunistic pathogens, such as Enterobacter spp. and Klebsiella spp., also known for multidrug resistance, could be an additional reason of concern.


Assuntos
Mordeduras e Picadas de Insetos , Microbiota , Vespas , Humanos , Abelhas , Animais , Enterococcus , Enterobacter , Testes de Sensibilidade Microbiana , Antibacterianos
2.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770821

RESUMO

Essential oils (EOs) are mixtures of volatile plant secondary metabolites and have been exploited by humans for thousands of years for various purposes because of their many bioactivities. In this study, the EO from Thymus capitatus, a thyme species organically cultured on the Greek Island of Lemnos, was analyzed for its chemical composition (through GC-FID and GC-MS), antioxidant activity (AA), and total phenolic content (TPC), as well as its antimicrobial and antibiofilm actions against three important foodborne bacterial pathogens (Salmonella enterica ser. Typhimurium, Listeria monocytogenes, and Yersinia enterocolitica). For the latter investigations, the minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentrations (MBICs) of the EO against the planktonic and biofilm growth of each pathogen were determined, together with the minimum biofilm eradication concentrations (MBECs). Results revealed that T. capitatus EO was rich in thymol, p-cymene, and carvacrol, presenting high AA and TPC (144.66 µmol TroloxTM equivalents and 231.32 mg gallic acid equivalents per g of EO, respectively), while its MICs and MBICs ranged from 0.03% to 0.06% v/v and 0.03% to 0.13% v/v, respectively, depending on the target pathogen. The EO was able to fully destroy preformed (mature) biofilms of all three pathogenic species upon application for 15 min, with MBECs ranging from 2.00 to 6.25% v/v. Overall, the results demonstrate that the EO of organically cultured T. capitatus presents strong antioxidant, antibacterial, and antibiofilm properties and could, therefore, be further exploited as a functional and antimicrobial natural formulation for food and health applications.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Thymus (Planta) , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Thymus (Planta)/química , Grécia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Fenóis/farmacologia , Salmonella typhimurium , Testes de Sensibilidade Microbiana
3.
BMC Genomics ; 22(1): 101, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535965

RESUMO

BACKGROUND: With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. RESULTS: Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. CONCLUSIONS: The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.


Assuntos
Evolução Biológica , Polimorfismo de Nucleotídeo Único , Animais , Abelhas/genética , Europa (Continente) , Genótipo , Geografia
4.
Chem Biodivers ; 16(7): e1900146, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31081187

RESUMO

Propolis presents notable and variable antioxidant activity depending on the territory and the local flora. As a result, propolis collected from areas presenting botanical diversity can become an intriguing research field. In the present study, we examined propolis from different areas of Samothraki, a small Greek island in the north-eastern Aegean Sea, considered a hot-spot of plant biodiversity. The analysis of propolis samples presented huge variability in the antioxidant activity, the total polyphenol content and the total flavonoids content. Propolis from two areas presented high antioxidant activity with a maximum at 1741.48 µmol of Trolox equivalents per gram of dry propolis weight, very high polyphenol content, 378.73 mg of gallic acid equivalents per gram of dry propolis weight, and high flavonoid content with a maximum concentration of 70.31 mg of quercetin equivalents per gram of dry propolis weight. The samples that presented the best qualitative characteristics were all red propolis which is a type that has never been reported in any part of Europe.


Assuntos
Antioxidantes/análise , Fotometria , Própole/análise , Antioxidantes/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Grécia , Ilhas , Picratos/antagonistas & inibidores , Própole/farmacologia
6.
Pestic Biochem Physiol ; 107(1): 132-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25149247

RESUMO

Amitraz is a pesticide targeting the octopaminergic receptors. In a previous study, octopamine, a biogenic amine, was found to induce a biphasic effect on the honeybee heart, inhibition at low concentrations and excitation at high concentrations. Furthermore, the honeybee heart was found to be far more sensitive to octopamine compared to other insect hearts. The objective of the present study was to investigate the effects of amitraz on the electrical and mechanical properties of the honeybee heart ex vivo and on the heart rate in vivo. In ex vivo conditions, amitraz at 10(-12) M caused a significant inhibition in the mechanical (p<0.05, n=4) and electrical properties (p<0.05, n=4). Higher concentrations such as 10(-9) and 10(-6) M induced a biphasic effect, with total inhibition for 7.86±1.26 min (n=7), followed by strong excitation of spontaneously-generated contractions (n=7). The initial elimination of heart activity was caused by strong hyperpolarization, while the subsequent excitation was caused by a depolarization in the membrane potential of pacemaker cells at 10(-9) M (n=8). In the in vivo experiments, abdominal injection or oral application of 0.20 ng of amitraz per bee induced a persistent increase of 134.28±4.07% (p<0.05, n=4) in the frequency of the cardiac action potentials. The above responses clearly show that the heart of the honeybee is extremely vulnerable to amitraz, which is nevertheless still used inside beehives, ostensibly to "protect" the honeybees against their main parasite, Varroa destructor.


Assuntos
Acaricidas/toxicidade , Abelhas/efeitos dos fármacos , Coração/efeitos dos fármacos , Inseticidas/toxicidade , Toluidinas/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Abelhas/fisiologia , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos
7.
PeerJ ; 11: e15065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077312

RESUMO

Detecting and distinguishing apicultural plants are important elements of the evaluation and quantification of potential honey production worldwide. Today, remote sensing can provide accurate plant distribution maps using rapid and efficient techniques. In the present study, a five-band multispectral unmanned aerial vehicle (UAV) was used in an established beekeeping area on Lemnos Island, Greece, for the collection of high-resolution images from three areas where Thymus capitatus and Sarcopoterium spinosum are present. Orthophotos of UAV bands for each area were used in combination with vegetation indices in the Google Earth Engine (GEE) platform, to classify the area occupied by the two plant species. From the five classifiers (Random Forest, RF; Gradient Tree Boost, GTB; Classification and Regression Trees, CART; Mahalanobis Minimum Distance, MMD; Support Vector Machine, SVM) in GEE, the RF gave the highest overall accuracy with a Kappa coefficient reaching 93.6%, 98.3%, 94.7%, and coefficient of 0.90, 0.97, 0.92 respectively for each case study. The training method used in the present study detected and distinguish the two plants with great accuracy and results were confirmed using 70% of the total score to train the GEE and 30% to assess the method's accuracy. Based on this study, identification and mapping of Thymus capitatus areas is possible and could help in the promotion and protection of this valuable species which, on many Greek Islands, is the sole foraging plant of honeybees.


Assuntos
Criação de Abelhas , Plantas , Tecnologia de Sensoriamento Remoto , Dispositivos Aéreos não Tripulados , Animais , Abelhas , Grécia , Dispersão Vegetal , Plantas/classificação , Tecnologia de Sensoriamento Remoto/métodos , Reprodutibilidade dos Testes
8.
Foods ; 11(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35885284

RESUMO

Several honeybee products are known for their functional properties, including important antioxidant and antimicrobial actions. The present study examines the antioxidant activity (AA), total polyphenolic content (TPC), and antibacterial action of honey and propolis samples collected from the Greek island of Samothrace, which were applied in vitro either individually or in combination in selected concentrations. To accomplish this, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and the Folin-Ciocalteu assays were employed to determine the AA and TPC, respectively, while the antibacterial action was investigated against each one of four important pathogenic bacterial species causing foodborne diseases (i.e., Salmonella enterica, Yersinia enterocolitica, Staphylococcus aureus, and Listeria monocytogenes) using the agar well diffusion assay. Compared to honey, propolis presented significantly higher AA and TPC, while its combined application with honey (at ratios of 1:1, 3:1, and 1:3) did not increase these values. Concerning the antibacterial action, Y. enterocolitica was proven to be the most resistant of all the tested bacteria, with none of the samples being able to inhibit its growth. S. enterica was susceptible only to the honey samples, whereas L. monocytogenes only to the propolis samples. The growth of S. aureus was inhibited by both honey and propolis, with honey samples presenting significantly higher efficacy than those of propolis. Νo synergism in the antibacterial actions was observed against any of the tested pathogens. Results obtained increase our knowledge of some of the medicinal properties of honey and propolis and may contribute to their further exploitation for health promotion and/or food-related applications (e.g., as preservatives to delay the growth of pathogenic bacteria).

9.
Foods ; 10(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204325

RESUMO

Honey is a natural food with a long history as a traditional medicine because of its many biological characteristics, including antimicrobial, antioxidant, anti-tumor and anti-inflammatory properties. In this study, the antimicrobial actions of eight different honeys from Lemnos island (north-eastern Greece) plus manuka honey (from New Zealand, UMF 30+, licensed in many countries as topical medical preparation) were evaluated against 10 clinically relevant bacteria, including five Gram-positive and five Gram-negative. To achieve this, an agar well diffusion assay measured the diameter of inhibition zones (mm) of two selected concentrations for each honey (25% and 12.5% v/v). The minimum inhibitory and bactericidal concentrations (MIC and MBC) of each sample were also calculated and compared against two representative bacterial species (Salmonella Typhimurium and Staphylococcus aureus) using broth microdilution and agar spot methods, respectively. The pH, water activity (aw), 5-hydroxymethylfurfural (HMF) and diastase levels, together with the pollen type and content of each honey, were also determined. Results revealed that all the Lemnos honeys presented antibacterial action, which for some samples was like that of manuka. These all had an acidic pH (3.61 ± 0.04), with a aw ≤ 0.60, while it is worth noting that those found to display the strongest antibacterial actions also presented the lowest HMF content, together with the highest diastase values, both of the latter being used as quality parameters. Pollen composition of the Lemnos honeys was multifloral, underlining the rich plant biodiversity encountered on the island. To summarize, Lemnos honeys could be further exploited as natural antimicrobial systems for use in foods and medicine.

10.
Virol J ; 3: 61, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16942620

RESUMO

Guards of Cyprian honey bee colonies, Apis mellifera cypria, display a great defensive behaviour against hornets' attacks. The deformed wing virus (DWV) and the kakugo virus (KV) genomes are very similar, but unlike KV, the presence of DWV is not related to honey bees' aggressiveness. This discrepancy is further discussed.


Assuntos
Agressão/fisiologia , Abelhas/virologia , Comportamento Animal/fisiologia , Vírus de Insetos/fisiologia , Animais , Abelhas/genética , Abelhas/fisiologia , Vírus de Insetos/genética , Vírus de RNA/genética , Asas de Animais/anormalidades
12.
Behav Processes ; 106: 122-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24857979

RESUMO

We investigated the prey-predator interactions between the European honeybee, Apis mellifera, and the invasive yellow-legged hornet, Vespa velutina, which first invaded France in 2004 and thereafter spread to neighbouring European countries (Spain, Portugal and Italy). Our goal was to determine how successfully honeybees are able to defend their colonies against their new predator in Europe. Experiments were conducted in the southwest of France-the point of entry of the hornet in Europe-under natural and semi-controlled field conditions. We investigated a total of eight apiaries and 95 colonies subjected to either low or high levels of predation. We analyzed hornet predatory behaviour and collective response of colonies under attack. The results showed that A. mellifera in France exhibit an inefficient and unorganized defence against V. velutina, unlike in other regions of Europe and other areas around the globe where honeybees have co-evolved with their natural Vespa predators.


Assuntos
Abelhas/fisiologia , Comportamento Predatório/fisiologia , Comportamento Social , Vespas/fisiologia , Animais , França , Espécies Introduzidas
13.
PLoS One ; 7(10): e47432, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23091624

RESUMO

Honeybees secrete 2-heptanone (2-H) from their mandibular glands when they bite. Researchers have identified several possible functions: 2-H could act as an alarm pheromone to recruit guards and soldiers, it could act as a chemical marker, or it could have some other function. The actual role of 2-H in honeybee behaviour remains unresolved. In this study, we show that 2-H acts as an anaesthetic in small arthropods, such as wax moth larva (WML) and Varroa mites, which are paralysed after a honeybee bite. We demonstrated that honeybee mandibles can penetrate the cuticle of WML, introducing less than one nanolitre of 2-H into the WML open circulatory system and causing instantaneous anaesthetization that lasts for a few minutes. The first indication that 2-H acts as a local anaesthetic was that its effect on larval response, inhibition and recovery is very similar to that of lidocaine. We compared the inhibitory effects of 2-H and lidocaine on voltage-gated sodium channels. Although both compounds blocked the hNav1.6 and hNav1.2 channels, lidocaine was slightly more effective, 2.82 times, on hNav.6. In contrast, when the two compounds were tested using an ex vivo preparation-the isolated rat sciatic nerve-the function of the two compounds was so similar that we were able to definitively classify 2-H as a local anaesthetic. Using the same method, we showed that 2-H has the fastest inhibitory effect of all alkyl-ketones tested, including the isomers 3- and 4-heptanone. This suggests that natural selection may have favoured 2-H over other, similar compounds because of the associated fitness advantages it confers. Our results reveal a previously unknown role of 2-H in honeybee defensive behaviour and due to its minor neurotoxicity show potential for developing a new local anaesthetic from a natural product, which could be used in human and veterinary medicine.


Assuntos
Anestésicos Locais/farmacologia , Abelhas , Mordeduras e Picadas , Cetonas/farmacologia , Feromônios/farmacologia , Animais , Abelhas/anatomia & histologia , Feminino , Larva/efeitos dos fármacos , Lidocaína/farmacologia , Masculino , Mariposas/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ratos , Nervo Isquiático/efeitos dos fármacos , Varroidae/efeitos dos fármacos
14.
Behav Processes ; 86(2): 236-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21187129

RESUMO

This study describes the tactics used by Cyprian honeybees (Apis mellifera cypria) to defend their colonies against hornet (Vespa orientalis orientalis) attacks. We use simulated hornet attacks and a combination of video recordings and image analysis to reveal, for the first time, contrasted intra-subspecies defensive tactics that operate at the colony level during predation. In some colonies, when attacked, the numbers of guards at the hive entrance increases rapidly to attack, engulf, and kill invading hornets. In other colonies, guards avoid conflicts with hornets by retreating gradually and by forming a defensive line of honeybees at the hive entrance. Retreater colonies have propolis walls at the hive entrances with small apertures that are too narrow to allow the hornet to access the hive and that therefore reinforces entrance protection. On the contrary, attacker colonies have propolis walls with large openings through which the hornet can pass; these bees block the hornet's access by intensively guarding the hive entrance. We experimentally destroy propolis walls to test whether colonies consistently rebuild walls with the same intrinsic characteristics and we also monitor the survival rate of each anti-predator tactic after massive natural predation by hornets.


Assuntos
Agressão/fisiologia , Abelhas/fisiologia , Comportamento Animal/fisiologia , Vespas/fisiologia , Animais , Comportamento de Nidação , Comportamento Predatório , Própole/química , Comportamento Social , Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA