Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Dosim ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735781

RESUMO

Recently, carbon fiber (CF) has prevailed as the primary material used in radiotherapy couchtops. Modern couchtops incorporate the CF sandwich design, in which 2 thin CF plates sandwich an air-equivalent polymeric foam. Developments in radiotherapy necessitate irradiation from posterior angles through the couchtop. However, the presence of the couchtop needs proper modeling in the treatment planning system (TPS) due to attenuation; otherwise, the tumor dose is reduced. In the current study, an effort was made with the intent of finding the optimum electron density (ED) values for Elekta's iBEAM Evo couchtop components (CF and Foam Core (FC)) for its proper modeling in Monaco TPS. Also, the attenuation of the beam due to the couchtop's presence was investigated. A cylindrical phantom with an ionization chamber positioned at the isocenter was utilized for the measurements. The phantom was placed centrally on the iBEAM Evo couchtop and was irradiated with an Elekta Infinity linear accelerator's 6, 10, and 15 MV photon beams. The gantry angle was set at 0o and from 120o to 180o with an increment of 10o. The same procedure was designed and followed in Monaco TPS. Measured and calculated dose values were compared by calculating percentage deviation (PD). Attenuation has also been calculated using the measurements of the experimental setup and the Monaco calculations. The values of ED that provided the optimum agreement between measured and Monaco-calculated dose values while minimizing PD were 0.55 g/cm3 for CF, and 0.1 g/cm3 for FC. The maximum values of PD for the beams of 6, 10, and 15 MV were -0.62%, +1,78%, and +2.35%, respectively, for a 5 × 5 cm2 field size. Furthermore, Monaco predicted attenuation from 1.83% to 6.26% (calculated values), while from the measurements, an attenuation from 1.44% to 5.75% (measured values) regarding the posterior angles was found. Thus, good agreement was verified between the TPS calculations and experimental measurements. Elekta's iBEAM Evo couchtop modeling was successfully validated in Monaco TPS. The couchtop's presence alters the patient's dose regarding irradiation from the posterior angles. Due to the attenuation of the beam, proper incorporation, modeling, and validation of the couchtop are necessary to improve the radiotherapy outcome and ensure that each patient receives the optimal treatment.

2.
AIMS Microbiol ; 7(3): 304-319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708174

RESUMO

Foodborne infections continue to plague Europe. Food safety monitoring is in crisis as the existing techniques for detecting pathogens do not keep up with the global rising of food production and consumption. Thus, the development of innovative techniques for detecting and identifying pathogenic bacteria has become critical. The aim of the present study was firstly to develop an innovative simple and low cost method of extracting bacterial DNA from contaminated food and water samples with Salmonella enteric(a) subsp. enteric(a) serovar Typhimurium and Listeria monocytogenes and its comparison with two commercial DNA extraction kits (Qiagen, Macherey-Nagel). Finally, pathogens' detection using two molecular techniques (PCR-electrophoresis, LAMP), in order to evaluate the best combination of DNA extraction and identification based on their sensitivity, cost, rapidity and simplicity. Considering the above criteria, among them, best was proved an in-house bacterial DNA extraction method, based on the chloroform-isoamyl alcohol protocol, with certain modifications. This technique showed statistically similar results in terms of sensitivity, compared to the commercial kits, while at the same time maintained high rapidity and much lower cost. Lastly, between the molecular techniques, LAMP was found more promising considering its simplicity, high rapidity and sensitivity. Conclusively, the in-house DNA extraction method along with the LAMP technique, was proven to be the best among the presented combinations.

3.
Nanomedicine (Lond) ; 13(19): 2435-2454, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30311542

RESUMO

AIM: To synthesize magnetic nanoparticles loaded with the SGLT2-inhibitor canagliflozin (CANA) and evaluate its anticancer potential under normoxic and hypoxic conditions in combination or not with radiotherapy. MATERIAL & METHODS: Iron oxide nanoparticles were synthesized via an alkaline hydrolytic precipitation of iron precursor in the presence of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate). CANA was conjugated to the nanoparticles using N-ethyl-N'-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide chemistry. The anticancer efficacy of the nanoparticles was evaluated in cancer cell lines and in a mouse PDV C57 tumor model. RESULTS: In the mouse xenograft cancer model, the combination of CANA-loaded nanoparticles with radiotherapy (in the presence of an external magnetic field at the tumor site) exhibited higher antitumor activity compared with the combination of free CANA with radiotherapy. CONCLUSION: The results obtained indicate the potential that the combination of selective delivery of a SGLT2 inhibitor such as CANA with radiotherapy holds as an anticancer treatment.


Assuntos
Canagliflozina/farmacologia , Neoplasias/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Animais , Canagliflozina/química , Terapia Combinada , Compostos Férricos/química , Humanos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Camundongos , Neoplasias/genética , Neoplasias/radioterapia , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA