Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Pathol ; 256(1): 119-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622442

RESUMO

Ameloblastoma is an odontogenic neoplasm characterized by slow intraosseous growth with progressive jaw resorption. Recent reports have revealed that ameloblastoma harbours an oncogenic BRAFV600E mutation with mitogen-activated protein kinase (MAPK) pathway activation and described cases of ameloblastoma harbouring a BRAFV600E mutation in which patients were successfully treated with a BRAF inhibitor. Therefore, the MAPK pathway may be involved in the development of ameloblastoma; however, the precise mechanism by which it induces ameloblastoma is unclear. The expression of ADP-ribosylation factor (ARF)-like 4c (ARL4C), induced by a combination of the EGF-MAPK pathway and Wnt/ß-catenin signalling, has been shown to induce epithelial morphogenesis. It was also reported that the overexpression of ARL4C, due to alterations in the EGF/RAS-MAPK pathway and Wnt/ß-catenin signalling, promotes tumourigenesis. However, the roles of ARL4C in ameloblastoma are unknown. We investigated the involvement of ARL4C in the development of ameloblastoma. In immunohistochemical analyses of tissue specimens obtained from 38 ameloblastoma patients, ARL4C was hardly detected in non-tumour regions but tumours frequently showed strong expression of ARL4C, along with the expression of both BRAFV600E and RAF1 (also known as C-RAF). Loss-of-function experiments using inhibitors or siRNAs revealed that ARL4C elevation depended on the RAF1-MEK/ERK pathway in ameloblastoma cells. It was also shown that the RAF1-ARL4C and BRAFV600E-MEK/ERK pathways promoted cell proliferation independently. ARL4C-depleted tumour cells (generated by knockdown or knockout) exhibited decreased proliferation and migration capabilities. Finally, when ameloblastoma cells were co-cultured with mouse bone marrow cells and primary osteoblasts, ameloblastoma cells induced osteoclast formation. ARL4C elevation in ameloblastoma further promoted its formation capabilities through the increased RANKL expression of mouse bone marrow cells and/or primary osteoblasts. These results suggest that the RAF1-MEK/ERK-ARL4C axis, which may function in cooperation with the BRAFV600E-MEK/ERK pathway, promotes ameloblastoma development. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Ameloblastoma/metabolismo , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteoclastos/patologia , Ameloblastoma/genética , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Osteoclastos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Via de Sinalização Wnt/genética
2.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835368

RESUMO

Epithelial to mesenchymal transition (EMT) in cancer is the process described where cancer epithelial cells acquire mesenchymal properties which can lead to enhanced invasiveness. Three-dimensional cancer models often lack the relevant and biomimetic microenvironment parameters appropriate to the native tumour microenvironment thought to drive EMT. In this study, HT-29 epithelial colorectal cells were cultivated in different oxygen and collagen concentrations to investigate how these biophysical parameters influenced invasion patterns and EMT. Colorectal HT-29 cells were grown in physiological hypoxia (5% O2) and normoxia (21% O2) in 2D, 3D soft (60 Pa), and 3D stiff (4 kPa) collagen matrices. Physiological hypoxia was sufficient to trigger expression of markers of EMT in the HT-29 cells in 2D by day 7. This is in contrast to a control breast cancer cell line, MDA-MB-231, which expresses a mesenchymal phenotype regardless of the oxygen concentration. In 3D, HT-29 cells invaded more extensively in a stiff matrix environment with corresponding increases in the invasive genes MMP2 and RAE1. This demonstrates that the physiological environment can directly impact HT-29 cells in terms of EMT marker expression and invasion, compared to an established cell line, MDA-MB-231, which has already undergone EMT. This study highlights the importance of the biophysical microenvironment to cancer epithelial cells and how these factors can direct cell behaviour. In particular, that stiffness of the 3D matrix drives greater invasion in HT-29 cells regardless of hypoxia. It is also pertinent that some cell lines (already having undergone EMT) are not as sensitive to the biophysical features of their microenvironment.


Assuntos
Transição Epitelial-Mesenquimal , Microambiente Tumoral , Humanos , Movimento Celular , Colágeno/metabolismo , Transição Epitelial-Mesenquimal/genética , Células HT29 , Hipóxia
3.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924238

RESUMO

Pancreatic cancer is a unique cancer in that up to 90% of its tumour mass is composed of a hypovascular and fibrotic stroma. This makes it extremely difficult for chemotherapies to be delivered into the core of the cancer mass. We tissue-engineered a biomimetic 3D pancreatic cancer ("tumouroid") model comprised of a central artificial cancer mass (ACM), containing MIA Paca-2 cells, surrounded by a fibrotic stromal compartment. This stromal compartment had a higher concentration of collagen type I, fibronectin, laminin, and hyaluronic acid (HA) than the ACM. The incorporation of HA was validated with alcian blue staining. Response to paclitaxel was determined in 2D MIA Paca-2 cell cultures, the ACMs alone, and in simple and complex tumouroids, in order to demonstrate drug sensitivity within pancreatic tumouroids of increasing complexity. The results showed that MIA Paca-2 cells grew into the complex stroma and invaded as cell clusters with a maximum distance of 363.7 µm by day 21. In terms of drug response, the IC50 for paclitaxel for MIA Paca-2 cells increased from 0.819 nM in 2D to 3.02 nM in ACMs and to 5.87 nM and 3.803 nM in simple and complex tumouroids respectively, indicating that drug penetration may be significantly reduced in the latter. The results demonstrate the need for biomimetic models during initial drug testing and evaluation.


Assuntos
Paclitaxel/farmacologia , Neoplasias Pancreáticas/patologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Engenharia Tecidual , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Imunofluorescência , Humanos , Imuno-Histoquímica , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Esferoides Celulares , Células Estromais/patologia , Células Tumorais Cultivadas
4.
Br J Cancer ; 123(7): 1178-1190, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641866

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are highly differentiated and heterogeneous cancer-stromal cells that promote tumour growth, angiogenesis and matrix remodelling. METHODS: We utilised an adapted version of a previously developed 3D in vitro model of colorectal cancer, composed of a cancer mass and the surrounding stromal compartment. We compared cancer invasion with an acellular stromal surround, a "healthy" or normal cellular stroma and a cancerous stroma. For the cancerous stroma, we incorporated six patient-derived CAF samples to study their differential effects on cancer growth, vascular network formation and remodelling. RESULTS: CAFs enhanced the distance and surface area of the invasive cancer mass whilst inhibiting vascular-like network formation. These processes correlated with the upregulation of hepatocyte growth factor (HGF), metallopeptidase inhibitor 1 (TIMP1) and fibulin-5 (FBLN5). Vascular remodelling of previously formed endothelial structures occurred through the disruption of complex networks, and was associated with the upregulation of vascular endothelial growth factor (VEGFA) and downregulation in vascular endothelial cadherin (VE-Cadherin). CONCLUSIONS: These results support, within a biomimetic 3D, in vitro framework, the direct role of CAFs in promoting cancer invasion, and their key function in driving vasculogenesis and angiogenesis.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Neoplasias Colorretais/patologia , Células Estromais/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/irrigação sanguínea , Progressão da Doença , Humanos , Invasividade Neoplásica , Fator A de Crescimento do Endotélio Vascular/análise , Remodelação Vascular
5.
Adv Healthc Mater ; 12(14): e2201749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36333907

RESUMO

The stiffness of tumors and their host tissues is much higher than most hydrogels, which are conventionally used to study in vitro cancer progression. The tumoroid assay is an engineered 3D in vitro tumor model that allows investigation of cancer cell invasion in an environment that is biomimetic in terms of extracellular matrix (ECM) composition and stiffness. Using this model, the change in matrix stiffness by epithelial colorectal cancer cells is systematically characterized by atomic force microscopy indentation tests. Less invasive epithelial cancer cells stiffen the tumor microenvironment while highly aggressive epithelial cancer cells show significant softening of the tumor microenvironment. Changes in stiffness are attributed to both cell-generated active forces as well as ECM degradation and remodeling. The degradation is in part attributed to the enzymatic activity of matrix metalloproteinases (MMPs) as demonstrated by the significant expression of MMP-2 and MMP-9 at both gene and protein levels. Targeting MMP activity through broad-spectrum drug inhibition (BB-94) reverses the changes in stiffness and also decreases cancer cell invasion. These results promote the idea of using mechano-based cancer therapies such as MMP inhibition.


Assuntos
Biomimética , Matriz Extracelular , Humanos , Matriz Extracelular/metabolismo , Hidrogéis/metabolismo , Invasividade Neoplásica/patologia , Microambiente Tumoral
6.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37192000

RESUMO

Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Retrovirus Endógenos , Neoplasias Pulmonares , Humanos , Calbindinas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Senescência Celular/genética , Retrovirus Endógenos/genética , Neoplasias Pulmonares/genética , Provírus/genética
7.
J Tissue Eng ; 13: 20417314221140500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582941

RESUMO

Ameloblastoma is a benign, locally invasive epithelial odontogenic neoplasm of the jaw. Treatment of choice is jaw resection, often resulting in significant morbidity. The aim of this study was to recapitulate ameloblastoma in a completely humanised 3D disease model containing ameloblastoma cells, osteoblasts and activated osteoclasts to investigate the RANKL pathway within the ameloblastoma stromal environment and its response to the RANKL antibody denosumab. In vitro bone was engineered by culturing human osteoblasts (hOB) in a biomimetic, dense collagen type I matrix, resulting in extensive mineral deposits by day 21 forming alizarin red positive bone like nodules throughout the 3D model. Activated TRAP + human osteoclasts were confirmed through the differentiation of human CD14+ monocytes after 10 days within the model. Lastly, the ameloblastoma cell lines AM-1 and AM-3 were incorporated into the 3D model. RANKL release was validated through TACE/ADAM17 activation chemically or through hOB co-culture. Denosumab treatment resulted in decreased osteoclast activation in the presence of hOB and ameloblastoma cells. These findings stress the importance of accurately modelling tumour and stromal populations as a preclinical testing platform.

8.
Matrix Biol Plus ; 16: 100125, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36452176

RESUMO

Tumour development and progression is dependent upon tumour cell interaction with the tissue stroma. Bioengineering the tumour-stroma microenvironment (TME) into 3D biomimetic models is crucial to gain insight into tumour cell development and progression pathways and identify therapeutic targets. Ameloblastoma is a benign but locally aggressive epithelial odontogenic neoplasm that mainly occurs in the jawbone and can cause significant morbidity and sometimes death. The molecular mechanisms for ameloblastoma progression are poorly understood. A spatial model recapitulating the tumour and stroma was engineered to show that without a relevant stromal population, tumour invasion is quantitatively decreased. Where a relevant stroma was engineered in dense collagen populated by gingival fibroblasts, enhanced receptor activator of nuclear factor kappa-B ligand (RANKL) expression was observed and histopathological properties, including ameloblastoma tumour islands, developed and were quantified. Using human osteoblasts (bone stroma) further enhanced the biomimicry of ameloblastoma histopathological phenotypes. This work demonstrates the importance of the two key stromal populations, osteoblasts, and gingival fibroblasts, for accurate 3D biomimetic ameloblastoma modelling.

9.
Front Bioeng Biotechnol ; 9: 660502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912551

RESUMO

The use of tissue-engineered 3D models of cancer has grown in popularity with recent advances in the field of cancer research. 3D models are inherently more biomimetic compared to 2D cell monolayers cultured on tissue-culture plastic. Nevertheless 3D models still lack the cellular and matrix complexity of native tissues. This review explores different 3D models currently used, outlining their benefits and limitations. Specifically, this review focuses on stiffness and collagen density, compartmentalization, tumor-stroma cell population and extracellular matrix composition. Furthermore, this review explores the methods utilized in different models to directly measure cancer invasion and growth. Of the models evaluated, with PDX and in vivo as a relative "gold standard", tumoroids were deemed as comparable 3D cancer models with a high degree of biomimicry, in terms of stiffness, collagen density and the ability to compartmentalize the tumor and stroma. Future 3D models for different cancer types are proposed in order to improve the biomimicry of cancer models used for studying disease progression.

10.
Sci Rep ; 11(1): 24088, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916549

RESUMO

Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone nodules of an average surface area of 0.1 mm2 and average height of 92.37 [Formula: see text] 7.96 µm over 21 days. We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing bone nodules. We have identified potential pathways for this inhibition. More critically, we present novel findings on the interaction of stromal osteoblasts with ameloblastoma.


Assuntos
Ameloblastoma/fisiopatologia , Ameloblastoma/terapia , Neoplasias Maxilomandibulares/fisiopatologia , Neoplasias Maxilomandibulares/terapia , Osteogênese , Células Estromais , Engenharia Tecidual/métodos , Ameloblastoma/complicações , Ameloblastoma/genética , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/terapia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Humanos , Neoplasias Maxilomandibulares/complicações , Neoplasias Maxilomandibulares/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Osteoblastos/fisiologia , Ligante RANK/genética , Ligante RANK/metabolismo , Ratos , Células Tumorais Cultivadas , Microambiente Tumoral
11.
Eur J Cancer ; 119: 179-193, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31470251

RESUMO

INTRODUCTION: There is a growing appreciation for including a complex, vascularised stroma in three-dimensional (3D) tumour models to recapitulate the native tumour microenvironment in situ. METHODS: Using a compartmentalised, biomimetic, 3D cancer model, comprising a central cancer mass surrounded by a vascularised stroma, we have tested the invasive capability of colorectal cancer cells. RESULTS: We show histological analysis of dense collagen I/laminin scaffolds, forming necrotic cores with cellular debris. Furthermore, cancer cells within this 3D matrix form spheroids, which is corroborated with high EpCAM expression. We validate the invasive growth of cancer cells into the stroma through quantitative image analysis and upregulation of known invasive gene markers, including metastasis associated in colon cancer 1, matrix metalloproteinase 7 and heparinase. Tumouroids containing highly invasive HCT116 cancer masses form less complex and less branched vascular networks, recapitulating 'leaky' vasculature associated with highly metastatic cancers. Angiogenic factors regulating this were vascular endothelial growth factor A and hepatocyte growth factor active protein. Where vascular networks were formed with less invasive cancer masses (HT29), higher expression of vascular endothelial cadherin active protein resulted in more complex and branched networks. To eliminate the cell-cell interaction between the cancer mass and stroma, we developed a three-compartment model containing an acellular ring to test the chemoattractant pull from the cancer mass. This resulted in migration of endothelial networks through the acellular ring accompanied by alignment of vascular networks at the cancer/stroma boundary. DISCUSSION: This work interrogates to the gene and protein level how cancer cells influence the development of a complex stroma, which shows to be directly influenced by the invasive capability of the cancer.


Assuntos
Comunicação Celular , Movimento Celular , Neoplasias Colorretais/irrigação sanguínea , Neovascularização Patológica/patologia , Esferoides Celulares/patologia , Microambiente Tumoral , Biomimética/métodos , Neoplasias Colorretais/patologia , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Imageamento Tridimensional/métodos , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Invasividade Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Tomografia/métodos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Sci Rep ; 7: 44045, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276469

RESUMO

The hallmark of tumours is the ability of cancerous cells to promote vascular growth, to disseminate and invade to distant organs. The metastatic process is heavily influenced by the extracellular matrix (ECM) density and composition of the surrounding tumour microenvironment. These microenvironmental cues, which include hypoxia, also regulate the angiogenic processes within a tumour, facilitating the spread of cancer cells. We engineered compartmentalized biomimetic colorectal tumouroids with stromal surrounds that comprised a range of ECM densities, composition and stromal cell populations. Recapitulating tissue ECM composition and stromal cell composition enhanced cancer cell invasion. Manipulation of ECM density was associated with an altered migration pattern from glandular buds (cellular aggregates) to epithelial cell sheets. Laminin appeared to be a critical component in regulating endothelial cell morphology and vascular network formation. Interestingly, the disruption of vascular networks by cancer cells was driven by changes in expression of several anti-angiogenic genes. Cancer cells cultured in our biomimetic tumouroids exhibited intratumoural heterogeneity that was associated with increased tumour invasion into the stroma. These findings demonstrate that our 3D in vitro tumour model exhibits biomimetic attributes that may permit their use in studying microenvironment clues of tumour progression and angiogenesis.


Assuntos
Movimento Celular , Modelos Biológicos , Neoplasias , Neovascularização Patológica , Engenharia Tecidual , Microambiente Tumoral , Linhagem Celular Tumoral , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
13.
Plant Methods ; 12: 21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27011764

RESUMO

BACKGROUND: Real-time quantitative polymerase chain reaction (RT-qPCR) analysis is a low cost and sensitive technique that is widely used to measure levels of gene expression. Selecting and validating appropriate reference genes for normalising target gene expression should be the first step in any expression study to avoid inaccurate results. RESULTS: In this study, ten candidate genes were tested for their suitability for use as reference genes in diurnal and developmental timecourse experiments in lettuce. The candidate reference genes were then used to normalise the expression pattern of the FLOWERING LOCUS T (FT) gene, one of key genes involved in the flowering time pathway whose expression is known to vary throughout the day and at different stages of development. Three reference genes, LsPP2A-1 (PROTEIN PHOSPHATASE 2A-1), LsPP2AA3 (PROTEIN PHOSPHATASE 2A REGULATORY SUBUNIT A3) and LsTIP41 (TAP42-INTERACTING PROTEIN OF 41 kDa), were the most stably expressed candidate reference genes throughout both the diurnal and developmental timecourse experiments. In the developmental experiment using just LsPP2A-1 and LsTIP41 as reference genes would be sufficient for accurate normalisation, whilst in the diurnal experiment all three reference genes, LsPP2A-1, LsPP2AA3 and LsTIP41, would be necessary. The FT expression pattern obtained demonstrates that the use of multiple and robust reference genes for RT-qPCR expression analyses results in a more accurate and reliable expression profile. CONCLUSIONS: Reference genes suitable for use in diurnal and developmental timecourse experiments in lettuce were identified and used to produce a more accurate and reliable analysis of lsFT expression levels than previously obtained in such timecourse experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA