Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 51(D1): D785-D791, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350610

RESUMO

YEASTRACT+ (http://yeastract-plus.org/) is a tool for the analysis, prediction and modelling of transcription regulatory data at the gene and genomic levels in yeasts. It incorporates three integrated databases: YEASTRACT (http://yeastract-plus.org/yeastract/), PathoYeastract (http://yeastract-plus.org/pathoyeastract/) and NCYeastract (http://yeastract-plus.org/ncyeastract/), focused on Saccharomyces cerevisiae, pathogenic yeasts of the Candida genus, and non-conventional yeasts of biotechnological relevance. In this release, YEASTRACT+ offers upgraded information on transcription regulation for the ten previously incorporated yeast species, while extending the database to another pathogenic yeast, Candida auris. Since the last release of YEASTRACT+ (January 2020), a fourth database has been integrated. CommunityYeastract (http://yeastract-plus.org/community/) offers a platform for the creation, use, and future update of YEASTRACT-like databases for any yeast of the users' choice. CommunityYeastract currently provides information for two Saccharomyces boulardii strains, Rhodotorula toruloides NP11 oleaginous yeast, and Schizosaccharomyces pombe 972h-. In addition, YEASTRACT+ portal currently gathers 304 547 documented regulatory associations between transcription factors (TF) and target genes and 480 DNA binding sites, considering 2771 TFs from 11 yeast species. A new set of tools, currently implemented for S. cerevisiae and C. albicans, is further offered, combining regulatory information with genome-scale metabolic models to provide predictions on the most promising transcription factors to be exploited in cell factory optimisation or to be used as novel drug targets. The expansion of these new tools to the remaining YEASTRACT+ species is ongoing.


Assuntos
Software , Transcrição Gênica , Leveduras , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/genética
2.
Am J Hum Genet ; 104(5): 968-976, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031011

RESUMO

The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor ß gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors.


Assuntos
Aneurisma/genética , Aneurisma Intracraniano/genética , Mutação , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Aneurisma/patologia , Criança , Estudos de Coortes , Feminino , Humanos , Aneurisma Intracraniano/patologia , Masculino , Homologia de Sequência , Adulto Jovem
3.
Development ; 144(3): 374-384, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143844

RESUMO

The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans.


Assuntos
Raiz Dentária/crescimento & desenvolvimento , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/fisiologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Humanos , Camundongos , Camundongos Mutantes , Modelos Dentários , Odontogênese/genética , Odontogênese/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Anormalidades Dentárias/genética , Coroa do Dente/citologia , Coroa do Dente/crescimento & desenvolvimento , Coroa do Dente/fisiologia , Raiz Dentária/citologia , Raiz Dentária/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
4.
Development ; 144(21): 4037-4045, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982687

RESUMO

Craniofacial development depends on cell-cell interactions, coordinated cellular movement and differentiation under the control of regulatory gene networks, which include the distal-less (Dlx) gene family. However, the functional significance of Dlx5 in patterning the oropharyngeal region has remained unknown. Here, we show that loss of Dlx5 leads to a shortened soft palate and an absence of the levator veli palatini, palatopharyngeus and palatoglossus muscles that are derived from the 4th pharyngeal arch (PA); however, the tensor veli palatini, derived from the 1st PA, is unaffected. Dlx5-positive cranial neural crest (CNC) cells are in direct contact with myoblasts derived from the pharyngeal mesoderm, and Dlx5 disruption leads to altered proliferation and apoptosis of CNC and muscle progenitor cells. Moreover, the FGF10 pathway is downregulated in Dlx5-/- mice, and activation of FGF10 signaling rescues CNC cell proliferation and myogenic differentiation in these mutant mice. Collectively, our results indicate that Dlx5 plays crucial roles in the patterning of the oropharyngeal region and development of muscles derived from the 4th PA mesoderm in the soft palate, likely via interactions between CNC-derived and myogenic progenitor cells.


Assuntos
Padronização Corporal , Região Branquial/embriologia , Comunicação Celular , Fator 10 de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Boca/embriologia , Mioblastos/citologia , Crista Neural/citologia , Crânio/embriologia , Animais , Região Branquial/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação para Baixo/genética , Fator 10 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos Knockout , Desenvolvimento Muscular , Mioblastos/metabolismo , Crista Neural/metabolismo , Palato/embriologia , Palato/metabolismo , Transdução de Sinais , Crânio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
5.
Development ; 142(21): 3734-45, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26395480

RESUMO

Disrupted ERK1/2 signaling is associated with several developmental syndromes in humans. To understand the function of ERK2 (MAPK1) in the postmigratory neural crest populating the craniofacial region, we studied two mouse models: Wnt1-Cre;Erk2(fl/fl) and Osr2-Cre;Erk2(fl/fl). Wnt1-Cre;Erk2(fl/fl) mice exhibited cleft palate, malformed tongue, micrognathia and mandibular asymmetry. Cleft palate in these mice was associated with delay/failure of palatal shelf elevation caused by tongue malposition and micrognathia. Osr2-Cre;Erk2(fl/fl) mice, in which the Erk2 deletion is restricted to the palatal mesenchyme, did not display cleft palate, suggesting that palatal clefting in Wnt1-Cre;Erk2(fl/fl) mice is a secondary defect. Tongues in Wnt1-Cre;Erk2(fl/fl) mice exhibited microglossia, malposition, disruption of the muscle patterning and compromised tendon development. The tongue phenotype was extensively rescued after culture in isolation, indicating that it might also be a secondary defect. The primary malformations in Wnt1-Cre;Erk2(fl/fl) mice, namely micrognathia and mandibular asymmetry, are linked to an early osteogenic differentiation defect. Collectively, our study demonstrates that mutation of Erk2 in neural crest derivatives phenocopies the human Pierre Robin sequence and highlights the interconnection of palate, tongue and mandible development. Because the ERK pathway serves as a crucial point of convergence for multiple signaling pathways, our study will facilitate a better understanding of the molecular regulatory mechanisms of craniofacial development.


Assuntos
Sistema de Sinalização das MAP Quinases , Crista Neural/metabolismo , Síndrome de Pierre Robin/embriologia , Síndrome de Pierre Robin/metabolismo , Animais , Fissura Palatina/patologia , Feminino , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Crista Neural/patologia , Síndrome de Pierre Robin/patologia , Língua/anormalidades
6.
Development ; 139(9): 1640-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438570

RESUMO

The tongue is a muscular organ and plays a crucial role in speech, deglutition and taste. Despite the important physiological functions of the tongue, little is known about the regulatory mechanisms of tongue muscle development. TGFß family members play important roles in regulating myogenesis, but the functional significance of Smad-dependent TGFß signaling in regulating tongue skeletal muscle development remains unclear. In this study, we have investigated Smad4-mediated TGFß signaling in the development of occipital somite-derived myogenic progenitors during tongue morphogenesis through tissue-specific inactivation of Smad4 (using Myf5-Cre;Smad4(flox/flox) mice). During the initiation of tongue development, cranial neural crest (CNC) cells occupy the tongue buds before myogenic progenitors migrate into the tongue primordium, suggesting that CNC cells play an instructive role in guiding tongue muscle development. Moreover, ablation of Smad4 results in defects in myogenic terminal differentiation and myoblast fusion. Despite compromised muscle differentiation, tendon formation appears unaffected in the tongue of Myf5-Cre;Smad4(flox/flox) mice, suggesting that the differentiation and maintenance of CNC-derived tendon cells are independent of Smad4-mediated signaling in myogenic cells in the tongue. Furthermore, loss of Smad4 results in a significant reduction in expression of several members of the FGF family, including Fgf6 and Fgfr4. Exogenous Fgf6 partially rescues the tongue myoblast fusion defect of Myf5-Cre;Smad4(flox/flox) mice. Taken together, our study demonstrates that a TGFß-Smad4-Fgf6 signaling cascade plays a crucial role in myogenic cell fate determination and lineage progression during tongue myogenesis.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Desenvolvimento Muscular/fisiologia , Transdução de Sinais/fisiologia , Proteína Smad4/metabolismo , Língua/embriologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Western Blotting , Células Cultivadas , Fator 6 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Mioblastos/citologia , Crista Neural/embriologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Proteína Smad4/genética , Tendões/citologia , Língua/citologia , beta-Galactosidase
7.
Development ; 138(4): 735-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21266409

RESUMO

Hair cells of the inner ear sensory organs originate from progenitor cells located at specific domains of the otic vesicle: the prosensory patches. Notch signalling is necessary for sensory development and loss of function of the Notch ligand jagged 1 (Jag1, also known as serrate 1) results in impaired sensory organs. However, the underlying mechanism of Notch function is unknown. Our results show that in the chicken otic vesicle, the Sox2 expression domain initially contains the nascent patches of Jag1 expression but, later on, Sox2 is only maintained in the Jag1-positive domains. Ectopic human JAG1 (hJag1) is able to induce Sox2 expression and enlarged sensory organs. The competence to respond to hJag1, however, is confined to the regions that expressed Sox2 early in development, suggesting that hJag1 maintains Sox2 expression rather than inducing it de novo. The effect is non-cell-autonomous and requires Notch signalling. hJag1 activates Notch, induces Hes/Hey genes and endogenous Jag1 in a non-cell-autonomous manner, which is consistent with lateral induction. The effects of hJag1 are mimicked by Jag2 but not by Dl1. Sox2 is sufficient to activate the Atoh1 enhancer and to ectopically induce sensory cell fate outside neurosensory-competent domains. We suggest that the prosensory function of Jag1 resides in its ability to generate discrete domains of Notch activity that maintain Sox2 expression within restricted areas of an extended neurosensory-competent domain. This provides a mechanism to couple patterning and cell fate specification during the development of sensory organs.


Assuntos
Proteínas Aviárias/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Orelha Interna/embriologia , Orelha Interna/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas de Ligação ao Cálcio/genética , Embrião de Galinha , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Especificidade de Órgãos , Receptores Notch/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas Serrate-Jagged , Transdução de Sinais
8.
Mar Environ Res ; 193: 106253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979403

RESUMO

Knowledge about connectivity between populations is essential for the fisheries management of commercial species. The lobster Jasus frontalis inhabits two oceanic island groups, the Juan Fernández Archipelago and the Desventuradas Islands, separated by 800 km. Since this species is primarily exploited in the Juan Fernández Archipelago, knowledge of the connectivity patterns among islands is foundational for species management. Here, we used variability at single-nucleotide polymorphisms (SNPs) and individual-based modeling (IBM) to estimate the genetic structure and connectivity between J. frontalis populations in these island groups. The variability at 9090 SNPs suggests two genetic populations, one in the Juan Fernández Archipelago and one in the Desventuradas Islands. Furthermore, IBM suggests an asymmetric connectivity pattern, with particles moving from the Juan Fernández Archipelago to the Desventuradas Islands but not vice versa. Since the IBM analysis suggests asymmetric larval movement between the islands, and the genetic analysis indicates isolation between the Juan Fernández Archipelago and the Desventuradas Islands, larval retention mechanisms such as small-scale oceanographic processes or behavior could hinder larval movement between islands. This study highlights the importance of using more than one methodology to estimate population connectivity.


Assuntos
Palinuridae , Animais , Palinuridae/genética , Ilhas , Metagenômica , Genética Populacional , Oceanos e Mares
9.
Cell Genom ; 4(6): 100566, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38788713

RESUMO

Meningiomas, although mostly benign, can be recurrent and fatal. World Health Organization (WHO) grading of the tumor does not always identify high-risk meningioma, and better characterizations of their aggressive biology are needed. To approach this problem, we combined 13 bulk RNA sequencing (RNA-seq) datasets to create a dimension-reduced reference landscape of 1,298 meningiomas. The clinical and genomic metadata effectively correlated with landscape regions, which led to the identification of meningioma subtypes with specific biological signatures. The time to recurrence also correlated with the map location. Further, we developed an algorithm that maps new patients onto this landscape, where the nearest neighbors predict outcome. This study highlights the utility of combining bulk transcriptomic datasets to visualize the complexity of tumor populations. Further, we provide an interactive tool for understanding the disease and predicting patient outcomes. This resource is accessible via the online tool Oncoscape, where the scientific community can explore the meningioma landscape.


Assuntos
Neoplasias Meníngeas , Meningioma , Transcriptoma , Meningioma/genética , Meningioma/patologia , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Algoritmos , Perfilação da Expressão Gênica/métodos
10.
J Biol Chem ; 287(4): 2353-63, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22123828

RESUMO

Cleft palate represents one of the most common congenital birth defects. Transforming growth factor ß (TGFß) signaling plays crucial functions in regulating craniofacial development, and loss of TGFß receptor type II in cranial neural crest cells leads to craniofacial malformations, including cleft palate in mice (Tgfbr2(fl/fl);Wnt1-Cre mice). Here we have identified candidate target genes of TGFß signaling during palatal formation. These target genes were selected based on combining results from gene expression profiles of embryonic day 14.5 palates from Tgfbr2(fl/fl);Wnt1-Cre mice and previously identified cleft palate phenotypes in genetically engineered mouse models. We found that fibroblast growth factor 9 (Fgf9) and transcription factor pituitary homeobox 2 (Pitx2) expressions are significantly down-regulated in the palate of Tgfbr2(fl/fl);Wnt1-Cre mice, and Fgf9 and Pitx2 loss of function mutations result in cleft palate in mice. Pitx2 expression is down-regulated by siRNA knockdown of Fgf9, suggesting that Fgf9 is upstream of Pitx2. We detected decreased expression of both cyclins D1 and D3 in the palates of Tgfbr2(fl/fl);Wnt1-Cre mice, consistent with the defect in cell proliferation. Significantly, exogenous FGF9 restores expression of cyclins D1 and D3 in a Pitx2-dependent manner and rescues the cell proliferation defect in the palatal mesenchyme of Tgfbr2(fl/fl);Wnt1-Cre mice. Our study indicates that a TGFß-FGF9-PITX2 signaling cascade regulates cranial neural crest cell proliferation during palate formation.


Assuntos
Proliferação de Células , Fator 9 de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Mesoderma/embriologia , Palato/embriologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Fissura Palatina/embriologia , Fissura Palatina/genética , Fator 9 de Crescimento de Fibroblastos/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Crista Neural/embriologia , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Proteína Homeobox PITX2
11.
Dev Cell ; 57(7): 854-866.e6, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35413235

RESUMO

During embryonic development, digits gradually emerge in a periodic pattern. Although genetic evidence indicates that digit formation results from a self-organizing process, the underlying mechanisms are still unclear. Here, we find that convergent-extension tissue flows driven by active stresses underlie digit formation. These active stresses simultaneously shape cartilage condensations and lead to the emergence of a compressive stress region that promotes high activin/p-SMAD/SOX9 expression, thereby defining digit-organizing centers via a mechanical feedback. In Wnt5a mutants, such mechanical feedback is disrupted due to the loss of active stresses, organizing centers do not emerge, and digit formation is precluded. Thus, digit emergence does not result solely from molecular interactions, as was previously thought, but requires a mechanical feedback that ensures continuous coupling between phalanx specification and elongation. Our work, which links mechanical and molecular signals, provides a mechanistic context for the emergence of organizing centers that may underlie various developmental processes.


Assuntos
Condrogênese , Extremidades , Ativinas , Retroalimentação , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese
12.
J Am Heart Assoc ; 11(4): e024289, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156398

RESUMO

Background Activating variants in platelet-derived growth factor receptor beta (PDGFRB), including a variant we have previously described (p.Tyr562Cys [g.149505130T>C [GRCh37/hg19]; c.1685A>G]), are associated with development of multiorgan pathology, including aneurysm formation. To investigate the association between the allele fraction genotype and histopathologic phenotype, we performed an expanded evaluation of post-mortem normal and aneurysmal tissue specimens from the previously published index patient. Methods and Results Following death due to diffuse subarachnoid hemorrhage in a patient with mosaic expression of the above PDGFRB variant, specimens from the intracranial, coronary, radial and aortic arteries were harvested. DNA was extracted and alternate allele fractions (AAF) of PDGFRB were determined using digital droplet PCR. Radiographic and histopathologic findings, together with genotype expression of PDGFRB were then correlated in aneurysmal tissue and compared to non-aneurysmal tissue. The PDGFRB variant was identified in the vertebral artery, basilar artery, and P1 segment aneurysms (AAF: 28.7%, 16.4%, and 17.8%, respectively). It was also identified in the coronary and radial artery aneurysms (AAF: 22.3% and 20.6%, respectively). In phenotypically normal intracranial and coronary artery tissues, the PDGFRB variant was not present. The PDGFRB variant was absent from lymphocyte DNA and normal tissue, confirming it to be a non-germline somatic variant. Primary cell cultures from a radial artery aneurysm localized the PDGFRB variant to CD31-, non-endothelial cells. Conclusions Constitutive expression of PDGFRB within the arterial wall is associated with the development of human fusiform aneurysms. The role of targeted therapy with tyrosine kinase inhibitors in fusiform aneurysms with PDGFRB mutations should be further studied.


Assuntos
Aneurisma Intracraniano , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Artéria Basilar , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/patologia , Mosaicismo , Artéria Radial/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
13.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159195

RESUMO

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Assuntos
Sirolimo , Proteína 1A de Ligação a Tacrolimo , Animais , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Peptídeos/farmacologia , Sirolimo/farmacologia , Tacrolimo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
14.
Microb Pathog ; 51(4): 268-76, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21699972

RESUMO

Investigating the proteolytic activity of the recombinant Mycobacterium leprae Heat Shock Protein of 65 kDa (rHsp65), chaperonin 2 (cpn2), we observed that it displays high instability. The fragmentation process starts at the C-terminus followed by progressive degradation of the N-terminus, which leads to a stable fragment comprising the middle region of the molecule. Urea was able to prevent autolysis, probably due to its denaturing action, while EDTA increased degradation levels indicating the need for metal ions. Peptides originated from autolysis were purified and analyzed by mass spectrometry, generating a continuous map. Since the bacteria and mammalian Hsp60 are known to be targets of the immune response and have been implicated in autoimmune diseases and chronic inflammation, the in vivo effect of rHsp65 peptides was evaluated in the spontaneous Systemic Lupus Erythematosus (SLE) model developed by the (NZB/NZW)F(1) mouse hybrids, and their individual anti-rHsp65 IgG2a/IgG1 antibody titer ratio was determined. The results showed orientation toward a T(H)1 responsiveness, and the treatment with the rHsp65 peptides diminished the environmental variance of the survival time of treated animals. These results outline the fact that environmental factors may also act through the modified stability expression of Heat Shock Proteins intervening during autoimmune processes.


Assuntos
Autoanticorpos/sangue , Doenças Autoimunes/diagnóstico , Proteínas de Bactérias/imunologia , Biomarcadores/sangue , Chaperonina 60/imunologia , Mycobacterium leprae/imunologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Doenças dos Roedores/imunologia , Análise de Sobrevida
15.
PLoS One ; 16(11): e0259595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735545

RESUMO

Most benthic marine invertebrates with sedentary benthic adult phases have planktonic larvae that permit connectivity between geographically isolated populations. Planktonic larval duration and oceanographic processes are vital to connecting populations of species inhabiting remote and distant islands. In the present study, we analyzed the population genetic structure of the sea urchin Centrostephanus sylviae, which inhabits only the Juan Fernández Archipelago and the Desventuradas islands, separated by more than 800 km. For 92 individuals collected from Robinson Crusoe and Selkirk Islands (Juan Fernández Archipelago) and San Ambrosio Island (Desventuradas Islands), 7,067 single nucleotide polymorphisms (SNPs) were obtained. The results did not show a spatial genetic structure for C. sylviae; relative high migration rates were revealed between the islands. An analysis of the water circulation pattern in the area described a predominant northward water flow with periods of inverted flow, suggesting that larvae could move in both directions. Overall, this evidence suggests that C. sylviae comprises a single large population composed of individuals separated by more than 800 km.


Assuntos
Ouriços-do-Mar/genética , Animais , Oceanografia , Polimorfismo de Nucleotídeo Único/genética
16.
J Proteomics ; 240: 104188, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781962

RESUMO

Intracranial saccular aneurysms (ISA) represent 90%-95% of all intracranial aneurysm cases, characterizing abnormal pockets at arterial branch points. Ruptures lead to subarachnoid hemorrhages (SAH) and poor prognoses. We applied mass spectrometry-based peptidomics to investigate the peptidome of twelve cerebrospinal fluid (CSF) samples collected from eleven patients diagnosed with ISA. For peptide profile analyses, participants were classified into: 1) ruptured intracranial saccular aneurysms (RIA), 2) unruptured intracranial saccular aneurysms (UIA), and late-ruptured intracranial saccular aneurysms (LRIA). Altogether, a total of 2199 peptides were detected by both Mascot and Peaks software, from which 484 (22.0%) were unique peptides. All unique peptides presented conserved chains, domains, regions of protein modulation and/or post-translational modification sites related to human diseases. Gene Ontology (GO) analyses of peptide precursor proteins showed that 42% are involved in binding, 56% in cellular anatomical entities, and 39% in intercellular signaling molecules. Unique peptides identified in patients diagnosed with RIA have a larger molecular weight and a distinctive developmental process compared to UIA and LRIA (P ≤ 0.05). Continued investigations will allow the characterization of the biological and clinical significance of the peptides identified in the present study, as well as identify prototypes for peptide-based pharmacological therapies to treat ISA. SIGNIFICANCE.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos
18.
Front Public Health ; 9: 625640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746067

RESUMO

Background: The current COVID-19 coronavirus pandemic is an emergency on a global scale, with huge swathes of the population required to remain indoors for prolonged periods to tackle the virus. In this new context, individuals' health-promoting routines are under greater strain, contributing to poorer mental and physical health. Additionally, individuals are required to keep up to date with latest health guidelines about the virus, which may be confusing in an age of social-media disinformation and shifting guidelines. To tackle these factors, we developed Elena+, a smartphone-based and conversational agent (CA) delivered pandemic lifestyle care intervention. Methods: Elena+ utilizes varied intervention components to deliver a psychoeducation-focused coaching program on the topics of: COVID-19 information, physical activity, mental health (anxiety, loneliness, mental resources), sleep and diet and nutrition. Over 43 subtopics, a CA guides individuals through content and tracks progress over time, such as changes in health outcome assessments per topic, alongside user-set behavioral intentions and user-reported actual behaviors. Ratings of the usage experience, social demographics and the user profile are also captured. Elena+ is available for public download on iOS and Android devices in English, European Spanish and Latin American Spanish with future languages and launch countries planned, and no limits on planned recruitment. Panel data methods will be used to track user progress over time in subsequent analyses. The Elena+ intervention is open-source under the Apache 2 license (MobileCoach software) and the Creative Commons 4.0 license CC BY-NC-SA (intervention logic and content), allowing future collaborations; such as cultural adaptions, integration of new sensor-related features or the development of new topics. Discussion: Digital health applications offer a low-cost and scalable route to meet challenges to public health. As Elena+ was developed by an international and interdisciplinary team in a short time frame to meet the COVID-19 pandemic, empirical data are required to discern how effective such solutions can be in meeting real world, emergent health crises. Additionally, clustering Elena+ users based on characteristics and usage behaviors could help public health practitioners understand how population-level digital health interventions can reach at-risk and sub-populations.


Assuntos
COVID-19 , Pandemias , Humanos , Estilo de Vida , Saúde Mental , Pandemias/prevenção & controle , SARS-CoV-2
19.
Clin Cancer Res ; 26(1): 193-205, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31615938

RESUMO

PURPOSE: Most World Health Organization (WHO) grade I meningiomas carry a favorable prognosis. Some become clinically aggressive with recurrence, invasion, and resistance to conventional therapies (grade 1.5; recurrent/progressive WHO grade I tumors requiring further treatment within 10 years). We aimed to identify biomarker signatures in grade 1.5 meningiomas where histopathology and genetic evaluation has fallen short. EXPERIMENTAL DESIGN: Mass spectrometry (MS)-based phosphoproteomics and peptide chip array kinomics were used to compare grade I and 1.5 tumors. Ingenuity Pathway Analysis (IPA) identified alterations in signaling pathways with validation by Western blot analysis. The selected biomarker was evaluated in an independent cohort of 140 samples (79/140 genotyped for meningioma mutations) by tissue microarray and correlated with clinical variables. RESULTS: The MS-based phosphoproteomics revealed differential Ser/Thr phosphorylation in 32 phosphopeptides. The kinomic profiling by peptide chip array identified 10 phosphopeptides, including a 360% increase in phosphorylation of RB1, in the 1.5 group. IPA of the combined datasets and Western blot validation revealed regulation of AKT and cell-cycle checkpoint cascades. RB1 hyperphosphorylation at the S780 site distinguished grade 1.5 meningiomas in an independent cohort of 140 samples and was associated with decreased progression/recurrence-free survival. Mutations in NF2, TRAF7, SMO, KLF4, and AKT1 E17K did not predict RB1 S780 staining or progression in grade 1.5 meningiomas. CONCLUSIONS: RB1 S780 staining distinguishes grade 1.5 meningiomas, independent of histology, subtype, WHO grade, or genotype. This promising biomarker for risk stratification of histologically bland WHO grade I meningiomas provides insight into the pathways of oncogenesis driving these outlying clinically aggressive tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/patologia , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Progressão da Doença , Seguimentos , Humanos , Fator 4 Semelhante a Kruppel , Espectrometria de Massas/métodos , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Gradação de Tumores , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Proteoma/análise , Proteoma/metabolismo , Fatores de Risco , Transdução de Sinais , Análise Serial de Tecidos/métodos
20.
Dev Biol ; 321(1): 51-63, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18632096

RESUMO

In vertebrates, early brain development takes place at the expanded anterior end of the neural tube, which is filled with embryonic cerebrospinal fluid (E-CSF). Most of the proteins contained within the E-CSF, which play crucial roles in CNS development, are transferred from the blood serum. Two important questions are how E-CSF is manufactured and how its homeostasis is controlled. In this respect, the timing of the blood-CSF barrier formation is controversial. Recently, the concept of a functional dynamic barrier has been introduced. This type of barrier is different from that found in adults and is adapted to the specific requirements and environment of the developing nervous system. In this study, we injected a number of proteins into the outflow of the heart and into the cephalic cavities and examined their transport rate between these two embryo compartments. The results indicated that a functional blood-CSF barrier dynamically controls E-CSF protein composition and homeostasis in chick embryos before the formation of functional choroid plexuses. We also showed that proteins are transferred through transcellular routes in a specific area of the brain stem, close to the ventral mesencephalic and prosencephalic neuroectoderm, lateral to the ventral midline, in particular blood vessels. This study contributes to our understanding of the mechanisms involved in CNS development, as this blood-CSF interface regulates the composition of E-CSF by regulating its specific composition.


Assuntos
Proteínas Aviárias/líquido cefalorraquidiano , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/embriologia , Animais , Proteínas Aviárias/metabolismo , Barreira Hematoencefálica/embriologia , Sistema Nervoso Central/metabolismo , Embrião de Galinha , Homeostase , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA