Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Acc Chem Res ; 56(17): 2278-2285, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37607332

RESUMO

ConspectusThe ligand shells of colloidal nanoparticles (NPs) can serve different purposes. In general, they provide colloidal stability by introducing steric repulsion between NPs. In the context of biological applications, the ligand shell plays a critical role in targeting, enabling NPs to achieve specific biodistributions. However, there is also another important feature of the ligand shell of NPs, namely, the creation of a local environment differing from the bulk of the solvent in which the NPs are dispersed. It is known that charged ligand shells can attract or repel ions and change the effective charge of a NP through Debye-Hückel screening. Positively charged ions, such as H+ (or H3O+) are attracted to negatively charged surfaces, whereas negatively charged ions, such as Cl- are repelled. The distribution of the ions around charged NP surfaces is a radial function of distance from the center of the NP, which is governed by a balance of electrostatic forces and entropy of ions and ligands. As a result, the ion concentration at the NP surface is different from its bulk equilibrium concentration, i.e., the charged ligand shell around the NPs has formed a distinct local environment. This not only applies to charged ligand shells but also follows a more general principle of induced condensation and depletion. Polar/apolar ligand shells, for example, result in a locally increased concentration of polar/apolar molecules. Similar effects can be seen for biocatalysts like enzymes immobilized in nanoporous host structures, which provide a special environment due to their surface chemistry and geometrical nanoconfinement. The formation of a local environment close to the ligand shell of NPs has profound implications for NP sensing applications. As a result, analyte concentrations close to the ligand shell, which are the ones that are measured, may be very different from the analyte concentrations in bulk. Based on previous work describing this effect, it will be discussed herein how such local environments, created by the choice of used ligands, may allow for tailoring the NPs' sensing properties. In general, the ligand shell around NPs can be attractive/repulsive for molecules with distinct properties and thus forms an environment that can modulate the specific response. Such local environments can also be optimized to modulate chemical reactions close to the NP surface (for example, by size filtering within pores) or to attract specific low abundance proteins. The importance hereby is that this is based on interaction with low selectivity between the ligands and the target molecules.

2.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791579

RESUMO

Encapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case in complex media which are relevant for intended applications in medicine and nanobiotechnology. Here, we studied the encapsulation of gold nanoparticles and quantum dots with amphiphilic copolymers differing in their charge and molecular structure. Protein adsorption to the nanoconjugates was studied with fluorescence correlation spectroscopy, and their surface activity was studied with dynamic interfacial tensiometry. Encapsulation of the nanoparticles without affecting their characteristic properties was possible with all tested polymers and provided good stabilization. However, the interaction with proteins and cells significantly depended on structural details. We identified statistical copolymers providing strongly reduced protein adsorption and low unspecific cellular uptake. Interestingly, different zwitterionic amphiphilic copolymers showed substantial differences in their resulting bio-repulsive properties. Among the polymers tested herein, statistical copolymers with sulfobetaine and phosphatidylcholine sidechains performed better than copolymers with carboxylic acid- and dimethylamino-terminated sidechains.


Assuntos
Ouro , Nanopartículas Metálicas , Polímeros , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Polímeros/química , Humanos , Pontos Quânticos/química , Propriedades de Superfície , Proteínas/química
3.
Small ; 19(19): e2206772, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36755199

RESUMO

Nanozymes are nanomaterials with biocatalytic properties under physiological conditions and are one class of artificial enzymes to overcome the high cost and low stability of natural enzymes. However, surface ligands on nanomaterials will decrease the catalytic activity of the nanozymes by blocking the active sites. To address this limitation, ligand-free PtAg nanoclusters (NCs) are synthesized and applied as nanozymes for various enzyme-mimicking reactions. By taking advantage of the mutual interaction of zeolitic imidazolate frameworks (ZIF-8) and Pt precursors, a good dispersion of PtAg bimetal NCs with a diameter of 1.78 ± 0.1 nm is achieved with ZIF-8 as a template. The incorporation of PtAgNCs in the voids of ZIF-8 is confirmed with structural analysis using the atomic pair-distribution function and powder X-ray diffraction. Importantly, the PtAgNCs present good catalytic activity for various enzyme-mimicking reactions, including peroxidase-/catalase- and oxidase-like reactions. Further, this work compares the catalytic activity between PtAg NCs and PtAg nanoparticles with different compositions and finds that these two nanozymes present a converse dependency of Ag-loading on their activity. This study contributes to the field of nanozymes and presents a potential option to prepare ligand-free bimetal biocatalysts with sizes in the nanocluster regime.


Assuntos
Nanopartículas Metálicas , Mimetismo Molecular , Peroxidase/química , Peroxidase/metabolismo , Nanopartículas Metálicas/química , Platina/química , Prata/química , Ligas/química
4.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203697

RESUMO

X-ray fluorescence imaging (XRF-imaging) with subcellular resolution is used to study the intracellular integrity of a protein corona that was pre-formed around gold nanoparticles (AuNP). Artificial proteins engineered to obtain Gd coordination for detection by XRF-imaging were used to form the corona. Indications about the degradation of this protein corona at a cellular and subcellular level can be observed by following the Au and Gd quantities in a time and spatial-dependent manner. The extended acquisition times necessary for capturing individual XRF-imaging cell images result in relatively small sample populations, stressing the need for faster image acquisition strategies in future XRF-imaging-based studies to deal with the inherent variability between cells. Still, results obtained reveal degradation of the protein corona during cellular trafficking, followed by differential cellular processing for AuNP and Gd-labelled proteins. Overall, this demonstrates that the dynamic degradation of the protein corona can be tracked by XRF-imaging to a certain degree.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Raios X , Ouro , Imagem Óptica
5.
Angew Chem Int Ed Engl ; 62(43): e202307948, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37635657

RESUMO

CuBi2 O4 has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering. We find that a fast decrease in the generated photocurrents correlates directly with the formation of a metallic Bi phase. We further show that the slower formation of metallic Cu, as well as the dissolution of the electrode in contact with the electrolyte, further affect the CuBi2 O4 activity and morphology. Our study provides a comprehensive picture of the degradation mechanisms affecting CuBi2 O4 electrodes under operation and poses the methodological basis to investigate the photocorrosion processes affecting a wide range of PEC materials.

6.
Small ; 18(37): e2201324, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905490

RESUMO

X-ray photon correlation spectroscopy (XPCS), a synchrotron source-based technique to measure sample dynamics, is used to determine hydrodynamic diameters of gold nanoparticles (Au NPs) of different sizes in biological environments. In situ determined hydrodynamic diameters are benchmarked with values obtained by dynamic light scattering. The technique is then applied to analyze the behavior of the Au NPs in a biological environment. First, a concentration-dependent agglomeration in the presence of NaCl is determined. Second, concentration-dependent increase in hydrodynamic diameter of the Au NPs upon the presence of proteins is determined. As X-rays in the used energy range are barely scattered by biological matter, dynamics of the Au NPs can be also detected in situ in complex biological environments, such as blood. These measurements demonstrate the possibility of XPCS for in situ analytics of nanoparticles (NPs) in biological environments where similar detection techniques based on visible light would severely suffer from scattering, absorption, and reflection effects.


Assuntos
Ouro , Nanopartículas Metálicas , Difusão Dinâmica da Luz , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral , Raios X
7.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628574

RESUMO

The widespread and increasing use of engineered nanomaterials (ENM) increases the risk of human exposure, generating concern that ENM may provoke adverse health effects. In this respect, their physicochemical characteristics are critical. The immune system may respond to ENM through inflammatory reactions. The NLRP3 inflammasome responds to a wide range of ENM, and its activation is associated with various inflammatory diseases. Recently, anisotropic ENM have become of increasing interest, but knowledge of their effects on the immune system is still limited. The objective of the study was to compare the effects of gold ENM of different shapes on NLRP3 inflammasome activation and related signalling pathways. Differentiated THP-1 cells (wildtype, ASC- or NLRP3-deficient), were exposed to PEGylated gold nanorods, nanostars, and nanospheres, and, thus, also different surface chemistries, to assess NLRP3 inflammasome activation. Next, the exposed cells were subjected to gene expression analysis. Nanorods, but not nanostars or nanospheres, showed NLRP3 inflammasome activation. ASC- or NLRP3-deficient cells did not show this effect. Gene Set Enrichment Analysis revealed that gold nanorod-induced NLRP3 inflammasome activation was accompanied by downregulated sterol/cholesterol biosynthesis, oxidative phosphorylation, and purinergic receptor signalling. At the level of individual genes, downregulation of Paraoxonase-2, a protein that controls oxidative stress, was most notable. In conclusion, the shape and surface chemistry of gold nanoparticles determine NLRP3 inflammasome activation. Future studies should include particle uptake and intracellular localization.


Assuntos
Ouro , Nanopartículas Metálicas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanotubos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
8.
J Am Chem Soc ; 143(25): 9405-9414, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138547

RESUMO

A ligand exchange strategy has been employed to understand the role of ligands on the structural and optical properties of atomically precise 29 atom silver nanoclusters (NCs). By ligand optimization, ∼44-fold quantum yield (QY) enhancement of Ag29(BDT)12-x(DHLA)x NCs (x = 1-6) was achieved, where BDT and DHLA refer to 1,3-benzene-dithiol and dihydrolipoic acid, respectively. High-resolution mass spectrometry was used to monitor ligand exchange, and structures of the different NCs were obtained through density functional theory (DFT). The DFT results from Ag29(BDT)11(DHLA) NCs were further experimentally verified through collisional cross-section (CCS) analysis using ion mobility mass spectrometry (IM MS). An excellent match in predicted CCS values and optical properties with the respective experimental data led to a likely structure of Ag29(DHLA)12 NCs consisting of an icosahedral core with an Ag16S24 shell. Combining the experimental observation with DFT structural analysis of a series of atomically precise NCs, Ag29-yAuy(BDT)12-x(DHLA)x (where y, x = 0,0; 0,1; 0,12 and 1,12; respectively), it was found that while the metal core is responsible for the origin of photoluminescence (PL), ligands play vital roles in determining their resultant PLQY.

9.
Chem Rev ; 119(8): 4819-4880, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30920815

RESUMO

The design of nanoparticles is critical for their efficient use in many applications ranging from biomedicine to sensing and energy. While shape and size are responsible for the properties of the inorganic nanoparticle core, the choice of ligands is of utmost importance for the colloidal stability and function of the nanoparticles. Moreover, the selection of ligands employed in nanoparticle synthesis can determine their final size and shape. Ligands added after nanoparticle synthesis infer both new properties as well as provide enhanced colloidal stability. In this article, we provide a comprehensive review on the role of the ligands with respect to the nanoparticle morphology, stability, and function. We analyze the interaction of nanoparticle surface and ligands with different chemical groups, the types of bonding, the final dispersibility of ligand-coated nanoparticles in complex media, their reactivity, and their performance in biomedicine, photodetectors, photovoltaic devices, light-emitting devices, sensors, memory devices, thermoelectric applications, and catalysis.


Assuntos
Ligantes , Nanopartículas Metálicas/química , Nanopartículas/química , Aminas/química , Ácidos Carboxílicos/química , Cetrimônio/química , Fosfinas/química , Eletricidade Estática , Compostos de Sulfidrila/química , Tensoativos/química
10.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916283

RESUMO

Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.


Assuntos
Ouro , Nanopartículas , Imagem Óptica , Espectrometria por Raios X , Humanos , Células Tumorais Cultivadas
11.
Small ; 16(46): e2003639, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33108047

RESUMO

Encapsulated molecular cargos are efficiently endocytosed by cells. For cytosolic delivery, understanding the dynamic process of cargos release from the carrier vehicles used for encapsulation and the lysosomes where the carrier vehicles are trapped (which in general is the bottleneck), followed by diffusion in the cytosol is important for improving drug/gene delivery strategies. A methodology is reported to image this process on a millisecond scale and to quantitatively analyze the data. Polyelectrolyte capsules with embedded gold nanostars to encapsulate 43 fluorescent molecular cargos with diverse properties, ranging from small fluorophores to fluorescently labeled proteins, siRNA, etc., are used. By short laser irradiation intracellular release of the molecular cargos from endocytosed capsules into the cytosol is triggered, and their intracellular spreading is imaged. Most of the released molecular cargos evenly distribute inside the entire cell, while others are enriched in certain cell compartments. The time the different molecular cargos take to distribute within cells, i.e., the spreading time, is used as a quantifier. Quantitative analysis reveals that intracellular spread cannot be described by free diffusion, but is determined by interaction of the molecular cargo with intracellular components.


Assuntos
Calefação , Polímeros , Endocitose , Endossomos , Ouro
12.
Small ; 16(36): e2001160, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32431081

RESUMO

Protein corona formation on the surface of nanoparticles (NPs) is observed in situ by measuring diffusion coefficients of the NPs under the presence of proteins with a 19 F nuclear magnetic resonance (NMR) based methodology. Formation of a protein corona reduces the diffusion coefficient of the NPs, based on an increase in their effective hydrodynamic radii. With this methodology it is demonstrated that the apparent dissociation constant of protein-NP complexes may vary over at least nine orders of magnitude for different types of proteins, in line with the Vroman effect. Using this methodology, the interaction between one type of protein and one type of nanoparticle can be studied quantitatively. Due to the NMR-based detection, this methodology has no interference by absorption/scattering effects, by which optical detection schemes are affected. By using the potential of the NMR chemical shift, the detection of multiple 19 F signals simultaneously opens the possibility to study the diffusion of several NPs at the same time. The 19 F labeling of the NPs has negligible effect on their acute toxicity and moderate effect on NPs uptake by cells.


Assuntos
Monitoramento Ambiental , Espectroscopia de Ressonância Magnética , Nanopartículas , Difusão , Monitoramento Ambiental/instrumentação , Nanopartículas/análise , Nanopartículas/química , Coroa de Proteína/análise , Proteínas/química
13.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066289

RESUMO

Nanostructured silica (SiO2)-based materials are attractive carriers for the delivery of bioactive compounds into cells. In this study, we developed hollow submicrometric particles composed of SiO2 capsules that were separately loaded with various bioactive molecules such as dextran, proteins, and nucleic acids. The structural characterization of the reported carriers was conducted using transmission and scanning electron microscopies (TEM/SEM), confocal laser scanning microscopy (CLSM), and dynamic light scattering (DLS). Moreover, the interaction of the developed carriers with cell lines was studied using standard viability, proliferation, and uptake assays. The submicrometric SiO2-based capsules loaded with DNA plasmid encoding green fluorescence proteins (GFP) were used to transfect cell lines. The obtained results were compared with studies made with similar capsules composed of polymers and show that SiO2-based capsules provide better transfection rates on the costs of higher toxicity.


Assuntos
Nanocápsulas/química , Dióxido de Silício/química , Transfecção/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos
14.
Angew Chem Int Ed Engl ; 59(14): 5438-5453, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31657113

RESUMO

There is a large number of two-dimensional static in vitro studies about the uptake of colloidal nano- and microparticles, which has been published in the last decade. In this Minireview, different methods used for such studies are summarized and critically discussed. Supplementary experimental data allow for a direct comparison of the different techniques. Emphasis is given on how quantitative parameters can be extracted from studies in which different experimental techniques have been used, with the goal of allowing better comparison.


Assuntos
Cápsulas/química , Transporte Biológico , Cápsulas/metabolismo , Linhagem Celular , Citometria de Fluxo , Humanos , Espectrometria de Massas , Microscopia Eletrônica , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Polieletrólitos/química
15.
Bioconjug Chem ; 30(11): 2751-2762, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31621306

RESUMO

In solution, nanoparticles may be conceptually compartmentalized into cores and engineered surface coatings. Recent advances allow for simple and accurate characterization of nanoparticle cores and surface shells. After introduction into a complex biological environment, adsorption of biological molecules to the nanoparticle surface as well as a loss of original surface components occur. Thus, colloidal nanoparticles in the context of the biological environment are hybrid materials with complex structure, which may result in different chemical, physical, and biological outcomes as compared to the original engineered nanoparticles. In this review, we will discuss building up an engineered inorganic nanoparticle from its inside core to its outside surface and following its degradation in a biological environment from its outside to its inside. This will involve the way to synthesize selected inorganic nanoparticles. Then, we will discuss the environmental changes upon exposure of these nanoparticles to biological media and their uptake by cells. Next, the intracellular fate of nanoparticles and their degradation will be discussed. Based on these examples, the need to see nanoparticles in the context of the biological environment as dynamic hybrid materials will be highlighted.


Assuntos
Biopolímeros/química , Coloides/química , Meio Ambiente , Compostos Inorgânicos/química , Nanopartículas/química , Humanos
16.
Langmuir ; 35(26): 8574-8583, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30964686

RESUMO

The importance of thermodynamics does not need to be emphasized. Indeed, elevated temperature processes govern not only industrial scale production but also self-assembly, chemical reaction, interaction between molecules, etc. Not surprisingly, biological processes typically take place at a specific temperature. Here, we look at possibilities to raise the localized temperature by a laser around noble-metal nanoparticles incorporated into shells of layer-by-layer polyelectrolyte microcapsules-freely suspended delivery vehicles in an aqueous solution, developed in the Department of Interfaces, Max Planck Institute of Colloids and Interfaces, headed by Helmuth Möhwald. Understanding the mechanisms of localized temperature rise is essential, that is why we analyze the influence of incident intensity, nanoparticle size, their distribution and aggregation state, as well as thermodynamics at the nanoscale. This leads us to scrutinize "global" (used for thermal encapsulation) versus "local" (used for release of encapsulated materials) temperature rise. Similar analysis is extended to planar polymeric coatings, the lipid membrane system of vesicles and cells, on which nanoparticles are adsorbed. Insights are provided into the mechanisms of physicochemical and biological effects, the nature of which has always been profoundly, interactively, and engagingly discussed in the Department of Interfaces. This analysis is combined with recent developments providing outlook and highlighting a broad range of emerging applications.

18.
J Nanobiotechnology ; 17(1): 98, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530277

RESUMO

The authors apologized for the unfortunate error in figure during publication of the article and they also explained that some of the solid grey graphs in Fig. 5 are intentionally based on the same data. For 8 different surface makers (CD14, CD73, CD34, CD105, CD19, CD90, CD45, HA-DR) in accordance to the guidelines of the manufacturer a panel of 4 different isotype controls were used, corresponding to 4 different fluorescence channels.

19.
Int J Mol Sci ; 20(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795518

RESUMO

Inorganic iron oxide nanoparticle cores as model systems for inorganic nanoparticles were coated with shells of amphiphilic polymers, to which organic fluorophores were linked with different conjugation chemistries, including 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) chemistry and two types of "click chemistry". The nanoparticle-dye conjugates were exposed to different enzymes/enzyme mixtures in order to investigate potential enzymatic degradation of the fluorophore-modified polymer shell. The release of the dyes and polymer fragments upon enzymatic digestion was quantified by using fluorescence spectroscopy. The data indicate that enzymatic cleavage of the fluorophore-modified organic surface coating around the inorganic nanoparticles in fact depends on the used conjugation chemistry, together with the types of enzymes to which the nanoparticle-dye conjugates are exposed.


Assuntos
Biocatálise , Etildimetilaminopropil Carbodi-Imida/química , Nanopartículas Metálicas/química , Química Click , Compostos Férricos/química , Corantes Fluorescentes/química
20.
Angew Chem Int Ed Engl ; 58(21): 7078-7082, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897254

RESUMO

A plasmonic core-shell gold nanostar/zeolitic-imidazolate-framework-8 (ZIF-8) nanocomposite was developed for the thermoplasmonic-driven release of encapsulated active molecules inside living cells. The nanocomposites were loaded, as a proof of concept, with bisbenzimide molecules as functional cargo and wrapped with an amphiphilic polymer that prevents ZIF-8 degradation and bisbenzimide leaking in aqueous media or inside living cells. The demonstrated molecule-release mechanism relies on the use of near-IR light coupled to the plasmonic absorption of the core gold nanostars, which creates local temperature gradients and thus, bisbenzimide thermodiffusion. Confocal microscopy and surface-enhanced Raman spectroscopy (SERS) were used to demonstrate bisbenzimide loading/leaking and near-IR-triggered cargo release inside cells, thereby leading to DNA staining.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA