Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Reprod Fertil Dev ; 34(16): 1034-1042, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36116785

RESUMO

CONTEXT: The FMR1 gene consists of 17 exons and codes for the FMRP protein. FMR1 is involved in four genetic disorders depending on the CGG repeats length in its 5'UTR: the full mutation is responsible for the Fragile X syndrome while the premutation is associated with the Fragile X-associated Tremor/Ataxia Syndrome, Fragile X-associated Primary Ovarian Insufficiency (FXPOI) and Fragile X-associated neuropsychiatric disorders. FMR1 presents multiple isoforms resulting from skipping of exons 12 and 14 and the use of alternative splice sites in exons 15 and 17. AIMS: To investigate the expression of Fmr1 splicing variants during folliculogenesis in the rat. METHODS: We used preantral, early antral and preovulatory follicles to isolate RNA and characterise, by fluorescent PCR followed by sequencing, all the isoforms present in the different follicular stages. KEY RESULTS: We identified two isoforms resulting from splicing of exon 12, six isoforms resulting from splicing of exon 14 and 15 and one isoform for exon 17. CONCLUSIONS: The expression levels of the isoforms vary within each follicular stage but not between different stages of folliculogenesis. Importantly, we identify for the first time in rat, an isoform that contains exon 12 and two isoforms, one that includes and one that excludes exon 14 and use the third acceptor site in exon 15. IMPLICATIONS: Characterisation of the different FMR1 variants expressed during folliculogenesis will help to understand the potential distinct cellular roles of each of them and the possible implication in the development of FXPOI.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Folículo Ovariano , Regiões 5' não Traduzidas , Animais , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Mutação , Folículo Ovariano/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Sítios de Splice de RNA , Ratos
2.
J Cell Physiol ; 235(4): 3592-3603, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31559642

RESUMO

Normal placentation entails highly regulated interactions of maternal leukocytes with vascular and trophoblast cells to favor vascular transformation. Neutrophil activation and neutrophil extracellular trap (NET) formation associate with poor placentation and severe pregnancy complications. To deepen into the mechanisms of trophoblast-neutrophil interaction, we explored the effects of NETs on trophoblast cell function and, conversely, whether trophoblast cell-derived factors condition neutrophils to favor angiogenesis and anti-inflammatory signals required for fetal growth. NETs isolated from activated neutrophils hindered trophoblast cell migration. Trophoblast conditioned media prevented the effect as well as the vasoactive intestinal peptide (VIP) known to regulate trophoblast and neutrophil function. On the other hand, factors released by trophoblast cells and VIP shaped neutrophils to a proangiogenic profile with increased vascular endothelial growth factor synthesis and increased capacity to promote vascular transformation. Results presented here provide novel clues to reconstruct the interaction of trophoblast cells and neutrophils in vivo during placentation in humans.


Assuntos
Autofagia/genética , Vasos Sanguíneos/crescimento & desenvolvimento , Células Endoteliais/citologia , Neovascularização Fisiológica/genética , Placentação/genética , Adulto , Vasos Sanguíneos/embriologia , Movimento Celular/genética , Implantação do Embrião/genética , Armadilhas Extracelulares/genética , Feminino , Humanos , Leucócitos/citologia , Masculino , Neutrófilos/citologia , Gravidez , Trofoblastos/citologia , Peptídeo Intestinal Vasoativo/farmacologia
3.
Mol Hum Reprod ; 26(8): 585-600, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467982

RESUMO

Although advances in the prediction and management of ovarian hyperstimulation syndrome (OHSS) have been introduced, complete prevention is not yet possible. Previously, we and other authors have shown that vascular endothelial growth factor, angiopoietins (ANGPTs) and sphingosine-1-phosphate are involved in OHSS etiology. In addition, we have demonstrated that ovarian protein levels of platelet-derived growth factor (PDGF) ligands -B and -D decrease in an OHSS rat model, whilst PDGFR-ß and ANGPT2 remain unchanged. In the present work, we investigated the role of PDGF-B in OHSS by evaluating ligand protein levels in follicular fluid (FF) from women at risk of developing OHSS and by using an immature rat model of OHSS. We demonstrated that PDGF-B and PDGF-D are lower in FF from women at risk of developing OHSS compared to control patients (P < 0.05). In the OHSS rat model, PDGF-B (0.5 µg/ovary) administration decreased ovarian weight (P < 0.05), reduced serum progesterone (P < 0.05) and lowered the percentage of cysts (P < 0.05), compared to untreated OHSS rats, but had no effect on the proportion of follicles or corpora lutea (CL). PDGF-B treatment also restored the expression of steroidogenic acute regulatory protein (P < 0.05) and P450 cholesterol side-chain cleavage enzyme (P < 0.01) to control levels. In addition, PDGF-B increased the peri-endothelial cell area in CL and cystic structures, and reduced vascular permeability compared to untreated OHSS ovaries. Lastly, PDGF-B increased the levels of junction proteins claudin-5 (P < 0.05), occludin (P < 0.05) and ß-catenin (P < 0.05), while boosting the extracellular deposition of collagen IV surrounding the ovarian vasculature (PP < 0.01), compared to OHSS alone. In conclusion, our findings indicate that PDGF-B could be another crucial mediator in the onset and development of OHSS, which may lead to the development of novel prediction markers and therapeutic strategies.


Assuntos
Síndrome de Hiperestimulação Ovariana/tratamento farmacológico , Síndrome de Hiperestimulação Ovariana/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Adulto , Animais , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Ratos Sprague-Dawley
4.
Arterioscler Thromb Vasc Biol ; 39(10): e219-e232, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31434496

RESUMO

OBJECTIVE: Ceramide 1-phosphate (C1P) is a bioactive sphingolipid highly augmented in damaged tissues. Because of its abilities to stimulate migration of murine bone marrow-derived progenitor cells, it has been suggested that C1P might be involved in tissue regeneration. In the present study, we aimed to investigate whether C1P regulates survival and angiogenic activity of human progenitor cells with great therapeutic potential in regenerative medicine such as endothelial colony-orming cells (ECFCs). Approach and Results: C1P protected ECFC from TNFα (tumor necrosis factor-α)-induced and monosodium urate crystal-induced death and acted as a potent chemoattractant factor through the activation of ERK1/2 (extracellular signal-regulated kinases 1 and 2) and AKT pathways. C1P treatment enhanced ECFC adhesion to collagen type I, an effect that was prevented by ß1 integrin blockade, and to mature endothelial cells, which was mediated by the E-selectin/CD44 axis. ECFC proliferation and cord-like structure formation were also increased by C1P, as well as vascularization of gel plug implants loaded or not with ECFC. In a murine model of hindlimb ischemia, local administration of C1P alone promoted blood perfusion and reduced necrosis in the ischemic muscle. Additionally, the beneficial effects of ECFC infusion after ischemia were amplified by C1P pretreatment, resulting in a further and significant enhancement of leg reperfusion and muscle repair. CONCLUSIONS: Our findings suggest that C1P may have therapeutic relevance in ischemic disorders, improving tissue repair by itself, or priming ECFC angiogenic responses such as chemotaxis, adhesion, proliferation, and tubule formation, which result in a better outcome of ECFC-based therapy.


Assuntos
Apoptose/efeitos dos fármacos , Ceramidas/farmacologia , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Diferenciação Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Camundongos , Morfogênese/efeitos dos fármacos , Sensibilidade e Especificidade
5.
J Cell Physiol ; 234(5): 6274-6285, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30362520

RESUMO

Spiral artery remodeling at the maternal-fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast-endothelial crosstalk in vitro. HTR-8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS-398 (selective cyclooxygenase-2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL-6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast-endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA-induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase-2 and IL-6 pathways were involved in H8-EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL-6 mRNA by cyclooxygenase-2 pathway in H8 cells. Collectively, LPA promotes trophoblast-endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal-fetal interface.


Assuntos
Células Endoteliais/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Placentação/efeitos dos fármacos , Placentação/fisiologia , Trofoblastos/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Gravidez , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Trofoblastos/metabolismo
6.
J Cell Physiol ; 233(8): 5949-5961, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29266203

RESUMO

Ovarian cancer is the fifth leading cause of cancer-related deaths in women. In the past 20 years, the canonical types of drugs used to treat ovarian cancer have not been replaced and the survival rates have not changed. These facts show the clear need to find new therapeutic strategies for this illness. Thus, the aim of the present study was to investigate the effect of a gamma-secretase inhibitor (DAPT) in combination with the Platelet-derived growth factor B (PDGFB) on an ovarian cancer xenograft model. To achieve this goal, we analyzed the effect of the administration of DAPT alone and the co-administration of DAPT and recombinant PDGFB on parameters associated with tumor growth and angiogenesis in an orthotopic experimental model of ovarian cancer. We observed that the dose of DAPT used was ineffective to reduce ovarian tumor growth, but showed anticancer activity when co-administered with recombinant PDGFB. The administration of PDGFB alone normalized tumor vasculature by increasing periendothelial coverage and vascular functionality. Interestingly, this effect exerted by PDGFB was also observed in the presence of DAPT. Our findings suggest that PDGFB is able to improve tumor vascularity and allows the anticancer action of DAPT in the tumor. We propose that this therapeutic strategy could be a new tool for ovarian cancer treatment and deserves further studies.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diaminas/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Tiazóis/farmacologia
7.
Hum Reprod ; 33(5): 844-859, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534229

RESUMO

STUDY QUESTION: Is ceramide-1-phosphate (C1P) an ovarian protective agent during alkylating chemotherapy? SUMMARY ANSWER: Local administration of C1P drastically reduces ovarian damage induced by cyclophosphamide (Cy) via protection of follicular reserve, restoration of hormone levels, inhibition of apoptosis and improvement of stromal vasculature, while protecting fertility, oocyte quality and uterine morphology. WHAT IS KNOWN ALREADY: Cancer-directed therapies cause accelerated loss of ovarian reserve and lead to premature ovarian failure (POF). Previous studies have demonstrated that C1P regulates different cellular processes including cell proliferation, cell migration, angiogenesis and apoptosis. This sphingolipid may be capable of modulating vascular development and apoptosis in ovaries affected by chemotherapy. STUDY DESIGN, SIZE, DURATION: The 6-8-week-old mice were weighed and administered either a single intraperitoneal injection of Cy (75 mg/kg) or an equal volume of saline solution only for control mice. Control and Cy mice underwent sham surgery and received an intrabursal injection of saline solution, while Cy + C1P animal groups received 5 µl C1P, either 0.5 or 1 mM, under the bursa of both ovaries 1 h prior to Cy administration. PARTICIPANTS/MATERIALS, SETTING, METHODS: Animals were euthanized by cervical dislocation or cardiac puncture 2 weeks after surgery for collection of blood orovary and uterus samples, which were cleaned of adhering tissue in culture medium and used for subsequent assays. Ovaries were used for Western blotting or immunohistochemical and/or histological analyses or steroid extraction, as required (n = 5-8 per group). A set of mice (n = 3/group) was destined for oocyte recovery and IVF. Finally, another set (n = 5-6/group) was separated to study fertility parameters. MAIN RESULTS AND THE ROLE OF CHANCE: The number of primordial (P < 0.01), primary (P < 0.05) and preantral follicles (P < 0.05) were decreased in Cy-treated mice compared to control animals, while atretic follicles were increased (P < 0.001). In Cy + C1P mice, the ovaries recovered control numbers of these follicular structures, in both C1P doses studied. Cy affected AMH expression, while it was at least partially recovered when C1P is administered as well. Cy caused an increase in serum FSH concentration (P < 0.01), which was prevented by C1P coadministration (P < 0.01). E2 levels in Cy-treated ovaries decreased significantly compared to control ovaries (P < 0.01), whilst C1P restored E2 levels to those of control ovaries (P < 0.01). Cy increased the expression of BAX (P < 0.01) and decreased the expression of BCLX-L compared to control ovaries (P < 0.01). The ovarian BCLX-L:BAX ratio was also lower in Cy-treated mice (P < 0.05). In the Cy + C1P group, the expression levels of BAX, BCLX-L and BCLX-L:BAX ratio were no different than those in control ovaries. In addition, acid sphingomyelinase (A-SMase) expression was higher in Cy-treated ovaries, whilst remaining similar to the control in the Cy + C1P group. Cy increased the apoptotic index (TUNEL-positive follicles/total follicles) in preantral and early antral stages, compared to control ovaries (P < 0.001 and P < 0.01, respectively). C1P protected follicles from this increase. No primordial or primary follicular cells stained for either cleaved caspase-3 or TUNEL when exposed to Cy, therefore, we have found no evidence for follicular reserve depletion in response to Cy being due to apoptosis. Cy caused evident vascular injury, especially in large cortical stromal vessels, and some neovascularization. In the Cy + C1P group, the disruptions in vascular wall continuity were less evident and the number of healthy stromal blood vessels seemed to be restored. In Cy-treated ovaries α-SMA-positive cells showed a less uniform distribution around blood vessels. C1P coadministration partially prevented this Cy-induced effect, with a higher presence of α-SMA-positive cells surrounding vessels. By H&E staining, Cy-treated mice showed endometrial alterations compared to controls, affecting both epithelial and stromal compartments. However, C1P allowed that the stromal tissue to maintain its loose quality and its glandular branches. Cy-treated animals had significantly lower pregnancy rates and smaller litter sizes compared with control mice (P = 0.013 and P < 0.05, respectively), whereas cotreatment with C1P preserved normal fertility. Furthermore, a higher (P < 0.05) proportion of abnormal oocytes was recovered from Cy-treated mice compared to the control, which was prevented by C1P administration. LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: The results of this study were generated from an in-vivo animal experimental model, already used by several authors. Further studies on C1P functions in female reproduction in pathological conditions such as chemotherapy-induced ovarian failure and on the safety of use of this sphingolipid are required. WIDER IMPLICATIONS OF THE FINDINGS: The present findings showed that C1P administration prior to Cy might be a promising fertility preservation strategy in female patients who undergo chemotherapy. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from ANPCyT (PICT 2015-1117), CONICET (PIP 380), Cancer National Institute (INC) and Roemmers Foundation, Argentina. The authors declare no conflicts of interest.


Assuntos
Ceramidas/uso terapêutico , Ciclofosfamida/efeitos adversos , Preservação da Fertilidade/métodos , Ovário/efeitos dos fármacos , Insuficiência Ovariana Primária/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Animais , Hormônio Antimülleriano/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ceramidas/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovário/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/metabolismo , Substâncias Protetoras/farmacologia
8.
Reproduction ; 155(5): R199-R209, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29386378

RESUMO

Polycystic ovary syndrome (PCOS) is the most prevalent endocrine pathology among women in reproductive age. Its main symptoms are oligo or amenorrhea, hyperandrogenism and the presence of ovarian cysts. It is also associated with infertility, obesity and insulin resistance. Mainly due to its heterogeneity, PCOS treatments are directed to manage its symptoms and to prevent associated diseases. The correct formation and regression of blood vessels during each ovarian cycle is indispensable for proper follicular development, ovulation and corpus luteum formation. The importance of these processes opened a new and promising field: ovarian angiogenesis. Vascular alterations characterize numerous pathologies, either with increased, decreased or abnormal angiogenesis. In the last years, several anomalies of ovarian angiogenesis have been described in women with PCOS. Therefore, it has been suggested that these alterations may be associated with the decreased - or lack of - ovulation rates and for the formation of cysts in the PCOS ovaries. Restoration of a proper vessel formation in the ovaries may lead to improved follicular development and ovulation in these patients. In the present review, we attempt to summarize the alterations in ovarian angiogenesis that have been described in women with PCOS. We also discuss the therapeutic approaches aimed to correct these alterations and their beneficial effects on the treatment of infertility in PCOS.


Assuntos
Neovascularização Patológica/patologia , Ovário/patologia , Síndrome do Ovário Policístico/patologia , Feminino , Humanos , Neovascularização Patológica/metabolismo , Ovário/metabolismo , Síndrome do Ovário Policístico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Reprod Biol Endocrinol ; 16(1): 35, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636114

RESUMO

BACKGROUND: Allopregnanolone is a neurosteroid synthesized in the central nervous system independently of steroidogenic glands; it influences sexual behavior and anxiety. The aim of this work is to evaluate the indirect effect of a single pharmacological dose of allopregnanolone on important processes related to normal ovarian function, such as folliculogenesis, angiogenesis and luteolysis, and to study the corresponding changes in endocrine profile and enzymatic activity over 4 days of the rat estrous cycle. We test the hypothesis that allopregnanolone may trigger hypothalamus - hypophysis - ovarian axis dysregulation and cause ovarian failure which affects the next estrous cycle stages. METHODS: Allopregnanolone was injected during the proestrous morning and then, the animals were sacrificed at each stage of the estrous cycle. Ovarian sections were processed to determine the number and diameter of different ovarian structures. Cleaved caspase 3, proliferating cell nuclear antigen, α-actin and Von Willebrand factor expressions were evaluated by immunohistochemistry. Luteinizing hormone, prolactin, estrogen and progesterone serum levels were measured by radioimmunoassay. The enzymatic activities of 3ß-hydroxysteroid dehydrogenase, 3α-hydroxysteroid oxidoreductase and 20α-hydroxysteroid dehydrogenase were determined by spectrophotometric assays. Two-way ANOVA followed by Bonferroni was performed to determine statistical differences between control and treated groups along the four stages of the cycle. RESULTS: The results indicate that allopregnanolone allopregnanolone decreased the number of developing follicles, while atretic follicles and cysts increased with no effects on normal cyclicity. Some cysts in treated ovaries showed morphological characteristics similar to luteinized unruptured follicles. The apoptosis/proliferation balance increased in follicles from treated rats. The endocrine profile was altered at different stages of the estrous cycle of treated rats. The angiogenic markers expression increased in treated ovaries. As regards corpora lutea, the apoptosis/proliferation balance and 20α-hydroxysteroid dehydrogenase enzymatic activity decreased significantly. Progesterone levels and 3ß-hydroxysteroid dehydrogenase enzymatic activity increased in treated rats. These data suggest that allopregnanolone interferes with steroidogenesis and folliculogenesis at different stages of the cycle. CONCLUSION: Allopregnanolone interferes with corpora lutea regression, which might indicate that this neurosteroid exerts a protective role over the luteal cells and prevents them from luteolysis. Allopregnanolone plays an important role in the ovarian pathophysiology.


Assuntos
Corpo Lúteo/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Pregnanolona/farmacologia , Análise de Variância , Animais , Caspase 3/análise , Caspase 3/metabolismo , Sistema Endócrino/efeitos dos fármacos , Estrogênios/sangue , Feminino , Hidroxiesteroide Desidrogenases/metabolismo , Imuno-Histoquímica , Hormônio Luteinizante/sangue , Ovário/efeitos dos fármacos , Ovário/patologia , Oxirredutases/metabolismo , Progesterona/sangue , Prolactina/sangue , Antígeno Nuclear de Célula em Proliferação/análise , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos
10.
Mol Hum Reprod ; 23(6): 417-427, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379469

RESUMO

STUDY QUESTION: Can the bioactive lipid sphingosine-1 phosphate (S1P) act as an endothelial barrier-enhancing molecule and, in turn, restore the vascular integrity and homoeostasis in a rat model of ovarian hyperstimulation syndrome (OHSS). STUDY ANSWER: In vivo administration of S1P may prevent the early onset of OHSS and decrease its severity. WHAT IS KNOWN ALREADY: Although advances in the prediction and treatment of OHSS have been made, complete prevention has not been possible yet. S1P in follicular fluid from women at risk of developing OHSS are lower in comparison from women who are not at such risk and administration of S1P in an OHSS rat model decreases ovarian capillary permeability. STUDY DESIGN, SIZE, DURATION: We used an animal model that develops OHSS in immature Sprague-Dawley rats. The rats were randomly divided into three groups: the control group, which was injected with 10 IU of pregnant mare's serum gonadotropin (PMSG), and 10 IU of hCG 48 h later; the OHSS group, which was injected with excessive doses of PMSG (50 IU/day) for four consecutive days, followed by hCG; and the OHSS + S1P group, which was injected with the same doses of PMSG and hCG as the OHSS group and then treated with 5 µl S1P (1 mM) under the bursa of both ovaries, whereas the other groups of animals received the S1P vehicle. PARTICIPANTS /MATERIALS, SETTING, METHODS: Rats were killed by decapitation 48 h after the hCG injection for ovary, endometrium and blood collection. The ovaries were weighed and then used for subsequent assays, while the serum was used for hormone assays. One of the ovaries from each rat (n = 6) was used for Western immunoblot and the other for immunohistochemical analysis. Statistical comparisons between groups were carried out. MAIN RESULTS AND THE ROLE OF CHANCE: S1P administration reduced the ovarian weight (P < 0.05), and decreased the concentration of serum progesterone in the OHSS group compared to the OHSS group without treatment (P < 0.001). The percentage of antral follicles in the OHSS group was lower than that in the control group. S1P increased the percentage of antral follicles (P < 0.05) and decreased the percentage of corpora lutea (P < 0.01) and cystic structures in the OHSS group (P < 0.05). S1P had no effect on the expression levels of the enzymes 3ß-hydroxysteroid dehydrogenase (3ßHSD) or cholesterol side-chain cleavage enzyme (P450scc), but reduced the levels of steroidogenic acute regulatory protein (StAR) in OHSS rat ovaries (P < 0.05). S1P decreased the endothelial (P < 0.05) and periendothelial (P < 0.01) cell area in OHSS rat ovaries. S1P restored the levels of N-cadherin and VE-cadherin proteins to control values. Furthermore, S1P enhanced the levels of claudin-5, occludin (P < 0.05) and sphingosine-1-phosphate receptor 1 (S1PR1) in OHSS (P < 0.01). In addition, no histological differences were found in endometrium between OHSS and S1P-treated OHSS animals. LIMITATIONS REASONS FOR CAUTION: The results of this study were generated from an in vivo OHSS experimental model, which has been used by several authors and our group due to the similarity between the rat and human angiogenic systems. Further studies in patients will be needed to evaluate the effects of S1P in the pathogenesis of OHSS. WIDER IMPLICATIONS OF THE FINDINGS: These findings concern the pathophysiological importance of S1P in OHSS. More studies on the regulation of endothelial cell barrier function by S1P in reproductive pathological processes and its therapeutic application are required. LARGE SCALE DATA: N/A. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by grants from ANPCyT (PICT 2012-897), CONICET (PIP 5471), Roemmers and Baron Foundations, Argentina. The authors declare no conflicts of interest.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Corpo Lúteo/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Folículo Ovariano/efeitos dos fármacos , Síndrome de Hiperestimulação Ovariana/tratamento farmacológico , Esfingosina/análogos & derivados , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Corpo Lúteo/metabolismo , Corpo Lúteo/patologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gonadotropinas Equinas/farmacologia , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ocludina/genética , Ocludina/metabolismo , Tamanho do Órgão , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Síndrome de Hiperestimulação Ovariana/genética , Síndrome de Hiperestimulação Ovariana/metabolismo , Síndrome de Hiperestimulação Ovariana/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Gravidez , Progesterona/sangue , Ratos , Ratos Sprague-Dawley , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato
11.
Mol Reprod Dev ; 84(8): 719-730, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628258

RESUMO

Tankyrases are physiological regulators of Axin, a protein involved in several cellular processes, including Wnt signaling. Here, we investigated the effect of a specific Tankyrase inhibitor (XAV939) in follicular-luteal dynamics, and its possible relationship with ovarian vascular development. Studies were designed to analyze the effect of intrabursa administration of XAV939 in gonadotropin-treated prepubertal rats. In particular, we examined follicle and corpus luteum development, steroidogenesis, angiogenic markers, and apoptotic parameters. We found that in vivo inhibition of Wnt signaling impaired corpus luteum development, with a decrease in the number of corpora lutea balanced by a high number of cysts; decreased circulating progesterone levels, likely due to a decrease in Steroidogenic acute regulatory protein content in the corpus luteum; and increased pro-apoptotic parameters. In addition, Extracellular signal-regulated kinase phosphorylation, Vascular endothelium growth factor 120 content, and endothelial cell area were diminished in corpora lutea of inhibitor-treated ovaries. Thus, Wnt/ß-catenin signaling appears to participate in the regulation of corpus luteum development and luteal cell function.


Assuntos
Corpo Lúteo/metabolismo , Progesterona/metabolismo , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismo , Animais , Corpo Lúteo/fisiologia , Feminino , Gonadotropinas/metabolismo , Ratos , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
12.
Reproduction ; 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27777323

RESUMO

Allopregnanolone, a progesterone metabolite, is one of the best characterized neurosteroids. In a dose that mimics serum levels during stress, allopregnanolone inhibits sexual receptivity and ovulation and induces a decrease in luteinizing hormone levels. The aim of this work was to examine the effect of an intracerebroventricular administration of allopregnanolone on ovarian morphophysiology, serum and tissue levels of progesterone and estrogen, and enzymatic activity of 3ß-hydroxysteroid dehydrogenase, 20α-hydroxysteroid dehydrogenase and 3α-hydroxysteroid oxido-reductase in the ovary and in the medial basal hypothalamus on the morning of estrus. Ovarian morphology was analyzed under light microscopy. The hormone assays were performed by radioimmunoassay. The enzymatic activities were measured by spectrophotometric analysis. The morphometric analysis revealed that, in allopregnanolone-treated animals, the number of secondary and Graafian follicles was decreased while that of atretic follicles and cysts was significantly increased. Some cysts showed luteinized unruptured follicles. There were no differences in the number of tertiary follicles or corpora lutea in comparison with the corresponding control groups. In allopregnanolone-treated animals, progesterone serum levels were increased, while ovarian progesterone levels were decreased. Moreover, 3ß-HSD and 3α-HSOR enzymatic activities were increased in the medial basal hypothalamus while ovarian levels were decreased. The enzyme 20α-hydroxysteroid dehydrogenase showed the opposite profile. The results of this study showed that allopregnanolone interferes on ovarian steroidogenesis and ovarian morphophysiology in rats, providing a clear evidence for the role of this neurosteroid in the control of reproductive function under stress situations.

13.
Reprod Fertil Dev ; 28(6): 690-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25485810

RESUMO

Ovarian hyperstimulation syndrome (OHSS) is a complication of ovarian stimulation with gonadotrophins following human chorionic gonadotrophin (hCG) administration. The relationship between hCG and OHSS is partly mediated via the production of angiogenic factors, such as vascular endothelial growth factor A (VEGFA) and angiopoietins (ANGPTs). Here, we investigated the effect of ANGPT1 inhibition on ovarian angiogenesis in follicular fluid (FF) from women at risk of OHSS, using the chorioallantoic membrane (CAM) of quail embryos as an experimental model. We also analysed cytoskeletal changes and endothelial junction protein expression induced by this FF in the presence or absence of an ANGPT1-neutralising antibody in endothelial cell cultures. The presence of this antibody restored the number of vascular branch points and integrin αvß3 levels in the CAMs to control values. ANGPT1 inhibition in FF from OHSS patients also restored the levels of claudin-5, vascular endothelial cadherin and phosphorylated ß-catenin and partially reversed actin redistribution in endothelial cells. Our findings suggest that ANGPT1 increases pathophysiological angiogenesis in patients at risk of OHSS by acting on tight and adherens junction proteins. Elucidating the mechanisms by which ANGPT1 regulates vascular development and cell-cell junctions in OHSS will contribute to identifying new therapeutic targets for the treatment of human diseases with aberrant vascular leakage.


Assuntos
Junções Aderentes/metabolismo , Angiopoietina-1/metabolismo , Endotélio Vascular/metabolismo , Neovascularização Patológica/etiologia , Folículo Ovariano/metabolismo , Síndrome de Hiperestimulação Ovariana/fisiopatologia , Junções Íntimas/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/patologia , Adulto , Angiopoietina-1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Argentina/epidemiologia , Bioensaio , Biomarcadores/metabolismo , Linhagem Celular , Células Cultivadas , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Coturnix , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Líquido Folicular/citologia , Líquido Folicular/metabolismo , Humanos , Folículo Ovariano/irrigação sanguínea , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/patologia , Síndrome de Hiperestimulação Ovariana/epidemiologia , Síndrome de Hiperestimulação Ovariana/metabolismo , Síndrome de Hiperestimulação Ovariana/patologia , Risco , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia
14.
J Cell Physiol ; 229(11): 1673-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24615682

RESUMO

Knockout models have shown that the coagulation system has a role in vascular development and angiogenesis. Herein, we report for the first time that zymogen FX and its active form (FXa) possess anti-angiogenic properties. Both the recombinant FX and FXa inhibit angiogenesis in vitro using endothelial EA.hy926 and human umbilical cord vascular endothelial cells (HUVEC). This effect is dependent on the Gla domain of FX. We demonstrate that FX and FXa use different mechanisms: the use of Rivaroxaban (RX) a specific inhibitor of FXa attenuated its anti-angiogenic properties but did not modify the anti-angiogenic effect of FX. Furthermore, only the anti-angiogenic activity of FXa is PAR-1dependent. Using in vivo models, we show that FX and FXa are anti-angiogenic in the zebrafish intersegmental vasculature (ISV) formation and in the chick embryo chorioallantoic membrane (CAM) assays. Our results provide further evidence for the non-hemostatic functions of FX and FXa and demonstrate for the first time a biological role for the zymogen FX.


Assuntos
Inibidores da Angiogênese/farmacologia , Fator Xa/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Fator X/farmacologia , Fator X/uso terapêutico , Fator Xa/uso terapêutico , Proteínas de Helminto/farmacologia , Proteínas de Helminto/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Receptor PAR-1/metabolismo , Peixe-Zebra
15.
Mol Reprod Dev ; 81(8): 748-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889290

RESUMO

Polycystic ovary syndrome (PCOS) is the most common endocrinological pathology among women of reproductive age, and is characterized by abnormalities in ovarian angiogenesis, among other features. Consistent with this association, follicular fluid (FF) concentration and ovarian expression of vascular endothelial growth factor (VEGF) are increased in PCOS patients. In this study, we examined the protein levels of platelet-derived growth factor (PDGF) BB and DD (PDGFBB and PDGFDD), angiopoietin 1 and 2 (ANGPT1 and ANGPT2), and their soluble receptor sTIE2 in FF from PCOS and control patients undergoing assisted reproductive techniques. We also analyzed the effect of FF from PCOS and control patients on tight and adherens junction protein expression in an endothelial cell line. PDGFBB and PDGFDD were significantly lower whereas ANGPT1 concentration was significantly higher in FF from PCOS patients than from control patients. No changes were found in the concentration of ANGPT2 or sTIE2. Expression of claudin-5 was significantly increased in endothelial cells incubated for 24 hr in the presence of FF from PCOS versus from control patients, while vascular-endothelial cadherin, ß-catenin, and zonula occludens 1 expression were unchanged. The changes observed in the levels of PDGF isoforms and ANGPT1 may prevent VEGF-induced vascular permeability in the PCOS ovary by regulating endothelial-cell-junction protein levels. Restoring the levels of angiogenic factors may provide new insights into PCOS treatment and the prevention of ovarian hyperstimulation syndrome in affected women.


Assuntos
Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Líquido Folicular/metabolismo , Ovário/metabolismo , Síndrome do Ovário Policístico/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Junções Aderentes/metabolismo , Adulto , Becaplermina , Western Blotting , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Estradiol/metabolismo , Feminino , Humanos , Síndrome de Hiperestimulação Ovariana/prevenção & controle , Progesterona/metabolismo , Radioimunoensaio , Técnicas de Reprodução Assistida , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Sci Rep ; 14(1): 6402, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493224

RESUMO

Allopregnanolone (ALLO) is a known neurosteroid and a progesterone metabolite synthesized in the ovary, CNS, PNS, adrenals and placenta. Its role in the neuroendocrine control of ovarian physiology has been studied, but its in situ ovarian effects are still largely unknown. The aims of this work were to characterize the effects of intrabursal ALLO administration on different ovarian parameters, and the probable mechanism of action. ALLO administration increased serum progesterone concentration and ovarian 3ß-HSD2 while decreasing 20α-HSD mRNA expression. ALLO increased the number of atretic follicles and the number of positive TUNEL granulosa and theca cells, while decreasing positive PCNA immunostaining. On the other hand, there was an increase in corpora lutea diameter and PCNA immunostaining, whereas the count of TUNEL-positive luteal cells decreased. Ovarian angiogenesis and the immunohistochemical expression of GABAA receptor increased after ALLO treatment. To evaluate if the ovarian GABAA receptor was involved in these effects, we conducted a functional experiment with a specific antagonist, bicuculline. The administration of bicuculline restored the number of atretic follicles and the diameter of corpora lutea to normal values. These results show the actions of ALLO on the ovarian physiology of the female rat during the follicular phase, some of them through the GABAA receptor. Intrabursal ALLO administration alters several processes of the ovarian morpho-physiology of the female rat, related to fertility and oocyte quality.


Assuntos
Pregnanolona , Progesterona , Gravidez , Feminino , Ratos , Animais , Pregnanolona/farmacologia , Progesterona/farmacologia , Antígeno Nuclear de Célula em Proliferação , Bicuculina/farmacologia , Receptores de GABA-A , Corpo Lúteo
17.
Biol Reprod ; 89(1): 9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23699387

RESUMO

Ovarian granulosa cell tumors (GCTs) represent 3%-5% of all ovarian malignancies. Treatments have limited proven efficacy and biologically targeted treatment is lacking. The aim of this study was to investigate the role of Notch signaling in the proliferation, steroidogenesis, apoptosis, and phosphatidylinositol 3-kinase (PI3K)/AKT pathway in a FOXL2-mutated granulosa tumor cell line (KGN) representative of the adult form of GCTs. When Notch signaling is initiated, the receptors expose a cleavage site in the extracellular domain to the metalloproteinase TACE and, following this cleavage, Notch undergoes another cleavage mediated by the presenilin-gamma-secretase complex. To achieve our goal, DAPT, an inhibitor of the gamma-secretase complex, was used to investigate the role of the Notch system in parameters associated with cell growth and death, using a human granulosa cell tumor line (KGN) as an experimental model. We observed that JAGGED1, DLL4, NOTCH1, and NOTCH4 were highly expressed in KGN cells as compared to granulosa-lutein cells obtained from assisted reproductive techniques patients. The proliferation and viability of KGN cells, as well as progesterone and estradiol production, decreased in the presence of 20 µM DAPT. Apoptotic parameters like PARP and caspase 8 cleavages, BAX, and BCLXs increased in KGN cells cultured with DAPT, whereas others such as BCL2, BCLXl, FAS, and FAS ligand did not change. AKT phosphorylation decreased and PTEN protein increased when Notch signaling was inhibited in KGN cells. We conclude that the Notch system acts as a survival pathway in KGN cells, and might be interacting with the PI3K/AKT pathway.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Tumor de Células da Granulosa/metabolismo , Neoplasias Ovarianas/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Dipeptídeos , Feminino , Proteína Forkhead Box L2 , Hormônios Esteroides Gonadais/biossíntese , Tumor de Células da Granulosa/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/metabolismo , Mutação , Neoplasias Ovarianas/genética , Receptores Notch/antagonistas & inibidores , Proteínas Serrate-Jagged
18.
Reproduction ; 145(4): 335-43, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23401597

RESUMO

Fragile X mental retardation protein (FMRP) belongs to a small family of RNA-binding proteins. Its absence or inactivity is responsible for fragile X syndrome, the most common cause of inherited mental retardation. Despite its ubiquitous expression, FMRP function and expression remain almost understudied in non-neuronal tissues, though previous studies on germline development during oogenesis may suggest a special function of this protein also in ovarian tissue. In addition, the well-documented association of FMR1 premutation state with fragile X-related premature ovarian insufficiency adds interest to the role of FMRP in ovarian physiology. The aim of the present work was to investigate the expression of Fmr1 mRNA and its protein, FMRP, at different stages of rat follicular development. By immunohistochemical studies we demonstrated FMRP expression in granulosa, theca and germ cells in all stages of follicular development. In addition, changes in Fmr1 expression, both at the protein and mRNA levels, were observed. FMRP levels increased upon follicular development while preantral and early antral follicles presented similar levels of Fmr1 transcripts with decreased expression in preovulatory follicles. These observations suggest that Fmr1 expression in the ovary is regulated at different and perhaps independent levels. In addition, our results show expression of at least four different isoforms of FMRP during all stages of follicular growth with expression patterns that differ from those observed in brain and testis. Our study shows a regulated expression of Fmr1, both at mRNA and protein levels, during rat follicular development.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Folículo Ovariano/metabolismo , Animais , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Chem Biol Interact ; 376: 110431, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925030

RESUMO

While oocytes and embryos cryopreservation can favor some patients with cancer-induced infertility to achieve pregnancy, the development of effective therapeutic strategies to preserve ovarian function during chemotherapy would be a significant advantage. The aim of the present study is to analyze whether Resveratrol treatment (Res) can preserve ovarian function from doxorubicin (Doxo)-induced gonadotoxicity using a mice model of premature ovarian failure. Res (7 and 15 mg/kg) increased the percentage of primary and antral follicles whilst decreasing the percentage of atretic follicles compared to Doxo alone. Res preserved the number of primordial follicles compared with those in the Doxo group but they did not change from those in the control group. Res treatment increased the number of AMH positive follicles compared to Doxo alone. Res increased proliferation index in follicular cells and reduced the DNA damage and apoptosis in preantral and early antral follicles compared to Doxo alone. Additionally, Doxo administration caused a severe endothelial damage and affected microvasculature stability in the ovary. However, Res was able to increase the recruitment of pericytes and smooth muscle cells in the Doxo-treated group. We also found that Res increased the expression of VEGF compared to Doxo alone. By H&E staining, Doxo-treated mice demonstrated endometrial alterations compared to controls, affecting both epithelial and stromal compartments. Nonetheless, Res restored the architecture of uterine tissue. Moreover, we also showed that Res administration is able to maintain antioxidant defenses through the increase of SOD expression in the Doxo-induced POF model. In conclusion, Res administration prior to and during Doxo treatment might serve as a noninvasive and low-cost protocol to preserve ovarian function in female cancer survivors.


Assuntos
Folículo Ovariano , Ovário , Feminino , Camundongos , Animais , Resveratrol/farmacologia , Doxorrubicina/farmacologia , Oócitos
20.
Mol Cell Endocrinol ; 575: 111995, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364632

RESUMO

Female fertility is highly dependent on energy balance. High fat diet (HFD) intake entails a risk of infertility and ovulatory disorders. Considering the increase in the prevalence of overweight and obesity over the last decades, it is crucial to understand the mechanisms involved in overweight-associated infertility. In this study, we evaluated the reproductive performance of female mice fed with a HFD and the effects of metformin administration on ovarian function in these mice. We hypothesized that one of the mechanisms involved in subfertility due to a HFD intake is the alteration of ovarian blood vessel formation. We found that mice fed with HFD had altered estrous cycles and steroidogenesis, increased ovarian fibrosis, fewer pups per litter and require more time to achieve pregnancy. HFD-fed mice also presented dysregulated ovarian angiogenesis and an increase in nuclear DNA damage in ovarian cells. Ovulation rates were lower in these animals, as evidenced both in natural mating and after ovulation induction with gonadotropins. Metformin ameliorated ovarian angiogenesis, improved steroidogenesis, fibrosis, and ovulation, decreased the time to pregnancy and increased litter sizes in HFD-fed mice. We conclude that ovarian angiogenesis is one of the mechanisms detrimentally affected by HFD intake. Since metformin could improve ovarian microvasculature, it may be an interesting strategy to study in women to shed light on new targets for patients with metabolic disturbances.


Assuntos
Infertilidade , Metformina , Gravidez , Animais , Feminino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Sobrepeso , Metformina/farmacologia , Fertilidade , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA