Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Pathog ; 16(12): e1009104, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306739

RESUMO

Modified-live herpesvirus vaccines are widely used in humans and animals, but field strains can emerge that have a higher virulence and break vaccinal protection. Since the introduction of the first vaccine in the 1970s, Marek's disease virus overcame the vaccine barrier by the acquisition of numerous genomic mutations. However, the evolutionary adaptations in the herpesvirus genome responsible for the vaccine breaks have remained elusive. Here, we demonstrate that point mutations in the multifunctional meq gene acquired during evolution can significantly alter virulence. Defined mutations found in highly virulent strains also allowed the virus to overcome innate cellular responses and vaccinal protection. Concomitantly, the adaptations in meq enhanced virus shedding into the environment, likely providing a selective advantage for the virus. Our study provides the first experimental evidence that few point mutations in a single herpesviral gene result in drastically increased virulence, enhanced shedding, and escape from vaccinal protection.


Assuntos
Vacinas contra Doença de Marek/imunologia , Doença de Marek/genética , Doença de Marek/imunologia , Proteínas Oncogênicas Virais/genética , Virulência/genética , Animais , Galinhas , Genes Virais/genética , Herpesvirus Galináceo 2/genética , Mutação Puntual
2.
Immunogenetics ; 70(10): 693-694, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29982918

RESUMO

The Figure 3 in the original version of this article was incorrectly published. In this article the top panel of Figure 3 that describes the amino acid sequence alignment is now added. The original article has been corrected.

3.
Immunogenetics ; 70(9): 599-611, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947944

RESUMO

The function of the chicken's major histocompatibility complex (MHC or B complex) class I major (BF2) and minor (BF1) glycoproteins is compared for their expression, ability to present viral antigens to cytotoxic T lymphocytes (CTLs), and interaction with natural killer (NK) cells. MHC-restricted CTLs recognized virus antigen in the context of the BF2*21 major glycoprotein but not the BF1*21 minor glycoprotein. Marek's disease virus (MDV), a large DNA virus known to reduce the cell surface expression of class I glycoprotein, reduced the expression of BF2 glycoprotein while BF1glycoprotein expressions are remained as no change or slight increase. In addition, the expression of BF1*21 class I glycoprotein protected target cells from NK cell lysis while the expression of the BF2*21 class I glycoprotein enhanced NK cell lysis of target cells. Therefore, BF1 and BF2 provide two different cellular immune functions; BF1 negatively regulates the NK cell killing activity and BF2 restricts the antigen specific CTL immune response.


Assuntos
Galinhas/genética , Antígenos de Histocompatibilidade Classe I/genética , Células Matadoras Naturais/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Vírus da Leucose Aviária/imunologia , Vírus da Leucose Aviária/patogenicidade , Linhagem Celular , Embrião de Galinha , Galinhas/imunologia , Epitopos/metabolismo , Regulação da Expressão Gênica/imunologia , Genes MHC Classe I , Herpesvirus Galináceo 2/patogenicidade , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Parasita/imunologia
4.
Avian Dis ; 57(2 Suppl): 509-18, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23901769

RESUMO

Marek's disease (MD) is a highly transmissible, herpesvirus-associated malignancy of chickens and turkeys caused by Marek's disease virus (MDV). MD is currently controlled through the use of nonsterilizing vaccines composed of antigenically related, apathogenic herpesviruses Mardivirus 2 (MDV-2), Meleagrid herpesvirus 1 (herpesvirus of turkeys, HVT), or attenuated MDV-1 strain CVI988 (Rispens). Since the mid-1960s, field strains of MDV have increased in virulence, due, in part, to the widespread use of vaccines since the early 1970s. One mutation that we have identified common to very virulent field strains (vv and vv+MDVs) since the 1990s has been a mutation in the UL1 gene, encoding glycoprotein L (gL). This mutation, a 12-nucleotide (nt) deletion in the signal peptide of gL, has been associated with increased virulence and decreased vaccine protection in the context of challenge with a vv+MDV, strain TK. To determine whether this mutation alone was sufficient to confer increased virulence, we introduced this mutation into the transmission-competent pRB-1B bacterial artificial chromosome (BAC) using two-step, Red-mediated recombination. The resulting mutant, pRB-1BgLdelta, was tested for changes in replication in cell culture using multistep growth curves, plaque size analysis, viral burst analysis, and the ability to compete with the parental virus when co-transfected at different ratios and sequentially passaged. In addition, we examined this mutant for changes in pathogenicity in inoculated and contact-exposed unvaccinated and vaccinated chickens. Our data show minor differences in plaque sizes in cell culture, but no discernible changes in the infection of specific-pathogen-free (SPF) leghorn chickens. We therefore conclude that although this mutation is indeed common to MDV field strains isolated in the eastern United States, it is insufficient to confer increased virulence or loss of vaccine protection previously observed for a vv+MDV strain having this mutation.


Assuntos
Galinhas , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Doença de Marek/imunologia , Proteínas Oncogênicas Virais/genética , Doenças das Aves Domésticas/imunologia , Proteínas do Envelope Viral/genética , Animais , Células Cultivadas , Embrião de Galinha , Cromossomos Artificiais Bacterianos/genética , Vacinas contra Herpesvirus/genética , Vacinas contra Herpesvirus/imunologia , Doença de Marek/virologia , Mutação , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
5.
Microorganisms ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985378

RESUMO

Marek's disease virus (MDV), an Alphaherpesvirus belonging to the genus Mardivirus, causes T cell lymphomas in chickens and remains one of the greatest threats to poultry production worldwide [...].

6.
Cell Rep Med ; 4(5): 101024, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37119814

RESUMO

RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2',3'-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses.


Assuntos
COVID-19 , Vírus Chikungunya , Vírus de RNA , Infecção por Zika virus , Zika virus , Animais , Camundongos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus Chikungunya/fisiologia , Imunidade Inata
7.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711787

RESUMO

RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak. Therefore, it is critical to identify broad-spectrum antiviral agents. We have tested a small library of innate immune agonists targeting pathogen recognition receptors, including TLRs, STING, NOD, Dectin and cytosolic DNA or RNA sensors. We observed that TLR3, STING, TLR8 and Dectin-1 ligands inhibited arboviruses, Chikungunya virus (CHIKV), West Nile virus (WNV) and Zika virus, to varying degrees. Cyclic dinucleotide (CDN) STING agonists, such as cAIMP, diABZI, and 2',3'-cGAMP, and Dectin-1 agonist scleroglucan, demonstrated the most potent, broad-spectrum antiviral function. Comparative transcriptome analysis revealed that CHIKV-infected cells had larger number of differentially expressed genes than of WNV and ZIKV. Furthermore, gene expression analysis showed that cAIMP treatment rescued cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provided protection against CHIKV in a CHIKV-arthritis mouse model. Cardioprotective effects of synthetic STING ligands against CHIKV, WNV, SARS-CoV-2 and enterovirus D68 (EV-D68) infections were demonstrated using human cardiomyocytes. Interestingly, the direct-acting antiviral drug remdesivir, a nucleoside analogue, was not effective against CHIKV and WNV, but exhibited potent antiviral effects against SARS-CoV-2, RSV (respiratory syncytial virus), and EV-D68. Our study identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses, which can be rapidly deployed to prevent or mitigate future pandemics.

8.
J Exp Med ; 203(5): 1307-17, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16651385

RESUMO

Telomerase is a ribonucleoprotein complex consisting of two essential core components: a reverse transcriptase and an RNA subunit (telomerase RNA [TR]). Dysregulation of telomerase has been associated with cell immortalization and oncogenesis. Marek's disease herpesvirus (MDV) induces a malignant T cell lymphoma in chickens and harbors in its genome two identical copies of a viral TR (vTR) with 88% sequence identity to chicken TR. MDV mutants lacking both copies of vTR were significantly impaired in their ability to induce T cell lymphomas, although lytic replication in vivo was unaffected. Tumor incidences were reduced by >60% in chickens infected with vTR- viruses compared with animals inoculated with MDV harboring at least one intact copy of vTR. Lymphomas in animals infected with the vTR- viruses were also significantly smaller in size and less disseminated. Constitutive expression of vTR in the chicken fibroblast cell line DF-1 resulted in a phenotype consistent with transformation as indicated by morphological alteration, enhanced anchorage-independent cell growth, cell growth beyond saturation density, and increased expression levels of integrin alpha v. We concluded that vTR plays a critical role in MDV-induced T cell lymphomagenesis. Furthermore, our results provide the first description of tumor-promoting effects of TR in a natural virus-host infection model.


Assuntos
Transformação Celular Viral , Linfoma de Células T/enzimologia , Mardivirus/enzimologia , Telomerase/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Galinhas , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Regulação Leucêmica da Expressão Gênica/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Genoma , Cadeias alfa de Integrinas/biossíntese , Cadeias beta de Integrinas/biossíntese , Linfoma de Células T/genética , Linfoma de Células T/patologia , Linfoma de Células T/virologia , Mardivirus/genética , Doença de Marek/enzimologia , Doença de Marek/genética , Doença de Marek/patologia , Doença de Marek/virologia , Mutação , Homologia de Sequência de Aminoácidos , Telomerase/genética , Proteínas Virais/genética
9.
Virus Genes ; 44(2): 262-72, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22160827

RESUMO

Fecal specimens, including swabs and litter extracts, collected from chickens, domestic ducks, turkeys, and Canadian geese were tested using degenerate primers targeting regions encoding for conserved amino acid motifs (YGDD and DY(T/S)(R/K/G)WDST) in calicivirus RNA-dependent RNA polymerases. Similar motifs are also present in other RNA viruses. Two fecal specimens and 18 litter extracts collected from chickens and turkeys yielded RT-PCR products. BLAST search and phylogenetic analysis revealed that all amplicons represented picornaviruses that clustered into two major groups. Four chicken and one turkey samples yielded 250 bp amplicons with 84-91% nucleotide identity to the recently described turkey hepatitis viruses, while 280 and 283 bp amplicons obtained from 11 chicken and 4 turkey samples represented novel picornaviruses with the closest nucleotide identity to kobuviruses (54-61%) and turdiviruses (47-54%). Analysis of 2.2-3.2 kb extended genome sequences including the partial P2 (2C) and complete P3 (3A, 3B (VPg), 3C(pro), and 3D(pol)) regions of selected strains indicated that viruses yielding the 280/283 bp amplicons represent a putative new genus of Picornaviridae. The 3'-non-translated region (NTR) of the turkey hepatitis-like viruses described in this study was significantly longer (641-654 nt) than that of any of the other piconaviruses and included a putative short open reading frame (ORF). In summary, we report the molecular detection of novel picornaviruses that appear to be endemic in both chickens and turkeys.


Assuntos
Variação Genética , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Animais , Galinhas , Análise por Conglomerados , Doenças Endêmicas/veterinária , Fezes/virologia , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Picornaviridae/genética , Infecções por Picornaviridae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Perus
10.
Avian Dis ; 56(2): 328-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22856190

RESUMO

Marek's disease (MD) is a highly contagious viral disease of chickens (Gallus gallus domesticus) caused by MD virus (MDV), characterized by paralysis, neurologic signs, and the rapid onset of T-cell lymphomas. MDV-induced T-cell transformation requires a basic leucine zipper protein called Marek's EcoRI-Q-encoded protein (Meq). We have identified mutations in the coding sequence of Meq that correlated with virus pathotype (virulent, very virulent, and very virulent plus). The aim of this study was to determine whether recombinant viruses could be isolated based on Meq expression through in vivo selection. Chicken embryo fibroblasts (CEFs) were cotransfected with an rMd5 strain-based Meq deletion virus (rMd5deltaMeq) and meq loci from strains representing different pathotypes of MDV. Transfected CEFs were inoculated into chickens in two independent studies. We were able to isolate a single recombinant virus, rMDV-1137, in a contact-exposed chicken. rMDV-1137 had recombined two copies of the meq gene of RB-1B and was found to have pathogenicity similar to both RB-1B and rMd5 parental strains. We found the RB-1B- and rMd5-induced lymphomas showed differences in composition and that rMDV-1137-induced lymphomas were intermediate in their composition. We were able to establish cell lines from both RB-1B- (MDCC-UD35, -UD37) and rMDV-1137 (MDCC-UD36, -UD38)-induced, but not rMd5-induced, lymphomas. To date, no rMd5- or parent Md5-transformed T-cell lines have been reported. Our results suggest that 1) a recombinant MDV can be selected on the basis of oncogenicity; 2) changes in Meq sequence seem to affect tumor composition and the ability to establish cell lines; and 3) in addition to meq, other genomic loci affect MDV pathogenicity and oncogenicity.


Assuntos
Galinhas , Mardivirus/genética , Doença de Marek/virologia , Proteínas Oncogênicas Virais/genética , Doenças das Aves Domésticas/virologia , Transfecção/veterinária , Animais , Southern Blotting/veterinária , Linhagem Celular Transformada , Embrião de Galinha , Fibroblastos/virologia , Citometria de Fluxo/veterinária , Mardivirus/patogenicidade , Doença de Marek/genética , Dados de Sequência Molecular , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Doenças das Aves Domésticas/genética , Recombinação Genética , Organismos Livres de Patógenos Específicos
11.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215975

RESUMO

Marek's disease virus (MDV) causes malignant lymphoma in chickens (Marek's disease, MD). Although MD is currently controlled by vaccination, MDV strains have continuously increased in virulence over the recent decades. Polymorphisms in Meq, an MDV-encoded oncoprotein that serves as a transcription factor, have been associated with the enhanced virulence of the virus. In addition, insertions and deletions in Meq have been observed in MDV strains of higher virulence, but their contribution to said virulence remains elusive. In this study, we investigated the contribution of an insertion (L-Meq) and a deletion in the Meq gene (S-Meq) to its functions and MDV pathogenicity. Reporter assays revealed that both insertion and deletion enhanced the transactivation potential of Meq. Additionally, we generated RB-1B-based recombinant MDVs (rMDVs) encoding each Meq isoform and analyzed their pathogenic potential. rMDV encoding L-Meq indueced the highest mortality and tumor incidence in infected animals, whereas the rMDV encoding S-Meq exhibited the lowest pathogenicity. Thus, insertion enhanced the transactivation activity of Meq and MDV pathogenicity, whereas deletion reduced pathogenicity despite having increased transactivation activity. These data suggest that other functions of Meq affect MDV virulence. These data improve our understanding of the mechanisms underlying the evolution of MDV virulence.


Assuntos
Herpesvirus Galináceo 2/genética , Proteínas Oncogênicas Virais/fisiologia , Ativação Transcricional/fisiologia , Animais , Embrião de Galinha , Herpesvirus Galináceo 2/patogenicidade , Virulência
12.
Viruses ; 13(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34835104

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that became widely recognized due to the epidemic in Brazil in 2015. Since then, there has been nearly a 20-fold increase in the incidence of microcephaly and birth defects seen among women giving birth in Brazil, leading the Centers for Disease Control and Prevention (CDC) to officially declare a causal link between prenatal ZIKV infection and the serious brain abnormalities seen in affected infants. Here, we used a unique rat model of prenatal ZIKV infection to study three possible long-term outcomes of congenital ZIKV infection: (1) behavior, (2) cell proliferation, survival, and differentiation in the brain, and (3) immune responses later in life. Adult offspring that were prenatally infected with ZIKV exhibited motor deficits in a sex-specific manner, and failed to mount a normal interferon response to a viral immune challenge later in life. Despite undetectable levels of ZIKV in the brain and serum in these offspring at P2, P24, or P60, these results suggest that prenatal exposure to ZIKV results in lasting consequences that could significantly impact the health of the offspring. To help individuals already exposed to ZIKV, as well as be prepared for future outbreaks, we need to understand the full spectrum of neurological and immunological consequences that could arise following prenatal ZIKV infection.


Assuntos
Exposição Materna/efeitos adversos , Malformações do Sistema Nervoso/etiologia , Transtornos do Neurodesenvolvimento/etiologia , Complicações Infecciosas na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Infecção por Zika virus , Animais , Animais Recém-Nascidos , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Infecção por Zika virus/imunologia , Infecção por Zika virus/fisiopatologia
13.
Viruses ; 13(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207958

RESUMO

Since Zika virus (ZIKV) first emerged as a public health concern in 2015, our ability to identify and track the long-term neurological sequelae of prenatal Zika virus (ZIKV) infection in humans has been limited. Our lab has developed a rat model of maternal ZIKV infection with associated vertical transmission to the fetus that results in significant brain malformations in the neonatal offspring. Here, we use this model in conjunction with longitudinal magnetic resonance imaging (MRI) to expand our understanding of the long-term neurological consequences of prenatal ZIKV infection in order to identify characteristic neurodevelopmental changes and track them across time. We exploited both manual and automated atlas-based segmentation of MR images in order to identify long-term structural changes within the developing rat brain following inoculation. The paradigm involved scanning three cohorts of male and female rats that were prenatally inoculated with 107 PFU ZIKV, 107 UV-inactivated ZIKV (iZIKV), or diluent medium (mock), at 4 different postnatal day (P) age points: P2, P16, P24, and P60. Analysis of tracked brain structures revealed significantly altered development in both the ZIKV and iZIKV rats. Moreover, we demonstrate that prenatal ZIKV infection alters the growth of brain regions throughout the neonatal and juvenile ages. Our findings also suggest that maternal immune activation caused by inactive viral proteins may play a role in altered brain growth throughout development. For the very first time, we introduce manual and automated atlas-based segmentation of neonatal and juvenile rat brains longitudinally. Experimental results demonstrate the effectiveness of our novel approach for detecting significant changes in neurodevelopment in models of early-life infections.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Imageamento por Ressonância Magnética/métodos , Transtornos do Neurodesenvolvimento/virologia , Neuroimagem/métodos , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/complicações , Zika virus/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico por imagem , Ratos , Zika virus/patogenicidade , Infecção por Zika virus/diagnóstico por imagem
14.
mBio ; 12(3)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975938

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here, we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD is expressed inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) is expressed markedly more efficiently and generates a more potent neutralizing responses as a DNA vaccine antigen than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers, such as a Helicobacter pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.IMPORTANCE All available vaccines for coronavirus disease 2019 (COVID-19) express or deliver the full-length SARS-CoV-2 spike (S) protein. We show that this antigen is not optimal, consistent with observations that the vast majority of the neutralizing response to the virus is focused on the S-protein receptor-binding domain (RBD). However, this RBD is not expressed well as an independent domain, especially when expressed as a fusion protein with a multivalent scaffold. We therefore engineered a more highly expressed form of the SARS-CoV-2 RBD by introducing four glycosylation sites into a face of the RBD normally occluded in the full S protein. We show that this engineered protein, gRBD, is more immunogenic than the wild-type RBD or the full-length S protein in both genetic and protein-delivered vaccines.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina , Receptores de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Sítios de Ligação , Vacinas contra COVID-19/química , Feminino , Engenharia Genética , Glicosilação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Receptores de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
15.
Cell Rep ; 35(1): 108940, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33784499

RESUMO

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Dano ao DNA , Isoxazóis/farmacologia , Pirazinas/farmacologia , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , COVID-19/metabolismo , COVID-19/patologia , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Células Vero
16.
bioRxiv ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33236008

RESUMO

The SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD expresses inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) expresses markedly more efficiently, and generates a more potent neutralizing responses as a DNA vaccine antigen, than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers such as an H. pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.

17.
Heliyon ; 6(12): e05669, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33336096

RESUMO

Marek's disease (MD) is an alphaherpesvirus (Marek's disease virus, MDV)-induced pathology of chickens associated with paralysis, immunosuppression, neurological signs, and T-cell lymphomas. MD is controlled in poultry production via live attenuated vaccines. The purpose of the current study was to compare methods for precipitating exosomes from vaccinated and protected chicken sera (VEX) and tumor-bearing chicken sera (TEX) for biomarker analysis of vaccine-induced protection and MD lymphomas respectively. A standard polyethylene glycol (PEG, 8%) method was compared to a commercial reagent (total exosome isolation reagent, TEI) for exosome yield and RNA content. Although exosomes purified by PEG or TEI were comparable in size and morphology, TEI-reagent yielded 3-4-fold greater concentration. Relative expression of 8 out of 10 G. gallus- and MDV1-encoded miRNAs examined displayed significant difference depending upon the precipitation method used. Standard PEG yields comparable, albeit lower amounts of exosomes than the TEI-reagent and a distinctive miRNA composition.

18.
J Virol ; 82(24): 12213-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842708

RESUMO

Marek's disease virus (MDV), a herpesvirus that causes a lymphoproliferative disorder in chickens, encodes a number of microRNAs derived primarily from two locations in the MDV genome. One cluster of microRNA genes flanks the meq oncogene, and a second cluster is found within the latency-associated transcript (LAT) region. The sequences of MDV microRNAs from a collection of field and reference strains with various levels of virulence were compared and found to be highly conserved. However, microRNAs from the meq cluster were detected at higher levels in lymphomas caused by a form of the virus designated very virulent plus (vv+; strain 615K, also known as T. King) than in those caused by a less virulent (very virulent [vv]) form (RB1B). For example, levels of mdv1-miR-M4, which shares a seed sequence with miR-155, a microRNA implicated in B-cell lymphoma, were threefold higher and levels of mdv1-miR-M2*/3p were more than sixfold higher in vv+ MDV-induced tumors than in vv MDV-induced tumors. In contrast, levels of the microRNAs from the LAT cluster were equivalent in tumors produced by vv and vv+ strains. Additionally, mdv1-miR-M4 is the MDV microRNA most highly expressed in tumors, where it accounts for 72% of all MDV microRNAs, as determined by deep sequencing. These data suggest that the meq cluster microRNAs play an important role in the pathogenicity of MDV.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/metabolismo , MicroRNAs/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Galinhas , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/virologia
19.
Avian Dis ; 53(2): 287-96, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19630238

RESUMO

We examined the functional role of a naturally occurring deletion within the glycoprotein L (gL) gene of Marek's disease virus (MDV) field isolates. We previously showed that this mutation incrementally increased the virulence of an MDV in contact-exposed SPF leghorn chickens, when chickens shedding this virus were co-infected with herpesvirus of turkeys (HVT). In our present study, we examined this mutation using two stocks of the very virulent plus (vv+)MDV strain TK, one of which harbored this deletion (TK1a) while the other did not (TK2a). We report that TK1a replicating in vaccinated chickens overcame bivalent (HVT/SB1) vaccine protection in contact-exposed chickens. Treatment groups exposed to vaccinated chickens inoculated with a 1:1 mix of TK1a and TK2a showed decreased bivalent vaccine efficacy, and this decrease correlated with the prevalence of the gL deletion indicative of TK1a. These results were also found using quadruplicate treatment groups and bivalently vaccinated chickens obtained from a commercial hatchery. As this deletion was found in 25 out of 25 recent field isolates from Delaware, Maryland, North Carolina, Pennsylvania, and Virginia, we concluded that there is a strong selection for this mutation, which appears to have evolved in HVT or bivalently vaccinated chickens. This is the first report of a mutation in a vv+MDV field strain for which a putative biological phenotype has been discerned. Moreover, this mutation in gL has apparently been selected in MDV field isolates through Marek's disease vaccination.


Assuntos
Galinhas , Mardivirus/genética , Doença de Marek/prevenção & controle , Proteínas do Envelope Viral/genética , Vacinas Virais/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Regulação Viral da Expressão Gênica/imunologia , Dados de Sequência Molecular , Mutação , Proteínas do Envelope Viral/metabolismo , Replicação Viral
20.
Avian Dis ; 53(2): 149-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19630217

RESUMO

Marek's disease virus (MDV) is an acute transforming alphaherpesvirus of chickens that causes Marek's disease. During the infection of chickens, MDV establishes latency in CD4+ (T-helper) cells, which are also the target of transformation. The study of MDV latency has been limited to the use of MDV tumor-derived cell lines or blood cells isolated from chickens during presumed periods of latent infection. In 1992 Pratt et al. described the uptake of the MDV genome by a reticuloendotheliosis-transformed T-cell line (RECC-CU91). They reported that MDV established latency in CU91 cells, but that MDV genome expression was very limited. In this report we have examined the uptake of oncogenic, recombinant, and vaccine strain MDVs. We report that the entire MDV genome is taken up by CU91 cells, is hypomethylated, and readily reactivates from this latent state in a manner similar to MDV-transformed cell lines. Notably, virus could not be recovered from cell lines harboring vaccine virus CVI988 or the JM102 strain of MDV. Overall these cell lines present a useful model for the further study of MDV latency, particularly for those viruses having mutations that may affect replication or fitness of the virus in vivo. In addition, these cell lines offer an attractive means to study the latency of vaccine viruses, which establish relatively low levels of latent infection in vivo.


Assuntos
Mardivirus/fisiologia , Linfócitos T/virologia , Latência Viral/fisiologia , Animais , Linhagem Celular , Transformação Celular Viral , Galinhas , Genoma Viral , Vírus da Reticuloendoteliose Aviária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA