Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 205: 112429, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863693

RESUMO

In the present work we compared the biological activity of mandelic acid (MA) and its Li, Na, K, Rb and Cs salts. The study also investigated the effect of raw wastewaters (RW) and treated wastewaters (TW), comparable to microbial medium (MM) on the biological activity of the tested chemical compounds used in concentrations of 5; 2.5; 1.25; 0.625; 0.3125 mg/ml. In the present experiment the evaluation of the following parameters was performed: E. coli (ATCC 25922) cells viability, growth inhibition of E. coli (ATCC 25922), the inhibition of GFP protein, genotoxicity and ROS generation. Our results showed that three main factors differentiated the antibacterial activity of MA and its Li, Na, K, Rb and Cs salts: study environment (MM, RW, TW), metal forming salt of mandelic acid and concentration of tested compounds. Additionally, raw and treated wastewater, compared to microbial medium, changes the antimicrobial activity of MA and its salts in relation to the E. coli strain. We also detected that both MA and its salts affect the GFP protein and the induction of the recA promoter (genotoxicity test). The activity of the tested salts in relation to these two parameters is strictly dependent on the type of salt-forming metal and the concentration used. The analysis of ROS synthesis suggests that in the majority of the studied mandelic acid salts, oxidative stress is the dominant mechanism of cytotoxicity and genotoxicity. We also showed that both raw wastewaters (RW) and treated wastewaters (TW), compared to microbial medium (MM), change significantly the activity of MA and its salts.


Assuntos
Metais Alcalinos , Águas Residuárias , Escherichia coli , Ácidos Mandélicos , Sais/farmacologia , Águas Residuárias/toxicidade
2.
Materials (Basel) ; 17(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203292

RESUMO

The aim of this work was the characterization of polymer microspheres obtained by the suspension polymerization of divinylbenzene (DVB) and glycidyl methacrylate (GMA), depending on the pore-forming diluents and molar ratio of monomers. The assessed properties included the chemical and porous structure, thermal stability, and sorption capacity of the obtained polymers towards methylene blue. The abovementioned characteristic was carried out for two series of copolymers with molar ratios of monomers of 1:2, 1:1 and 2:1, synthetized with toluene and a mixture of decanol and benzyl alcohol. The structure of the polymers was confirmed by FTIR and elemental analysis. The results of TGA demonstrated the main influence on thermal stability was the composition of polymers, whereas the impact of porogens was negligible. The SBET varied in the range of 12-534 m2g-1 for polymers obtained with toluene and 0-396 m2g-1 with the mixture of alcohols. Toluene enhanced the formation of micro- and mesopores, while the mixture of alcohols enhanced the creation of meso- and macropores. For the polymers prepared with toluene, their effectiveness in water purification decreases in the following order: DVB-GMA 2:1 > DVB-GMA 1:1 > DVB-GMA 1:2, according to the decreasing values of porous structure parameters. In the case of a series obtained with a mixture of alcohols, such correlation was not observed.

3.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374596

RESUMO

The presence of antibiotic-resistant bacteria in our environment is a matter of growing concern. Consumption of contaminated drinking water or contaminated fruit or vegetables can provoke ailments and even diseases, mainly in the digestive system. In this work, we present the latest data on the ability to remove bacteria from potable water and wastewater. The article discusses the mechanisms of the antibacterial activity of polymers, consisting of the electrostatic interaction between bacterial cells and the surface of natural and synthetic polymers functionalized with metal cations (polydopamine modified with silver nanoparticles, starch modified with quaternary ammonium or halogenated benzene). The synergistic effect of polymers (N-alkylaminated chitosan, silver doped polyoxometalate, modified poly(aspartic acid)) with antibiotics has also been described, allowing for precise targeting of drugs to infected cells as a preventive measure against the excessive spread of antibiotics, leading to drug resistance among bacteria. Cationic polymers, polymers obtained from essential oils (EOs), or natural polymers modified with organic acids are promising materials in the removal of harmful bacteria. Antimicrobial polymers are successfully used as biocides due to their acceptable toxicity, low production costs, chemical stability, and high adsorption capacity thanks to multi-point attachment to microorganisms. New achievements in the field of polymer surface modification in order to impart antimicrobial properties were summarized.

4.
Materials (Basel) ; 15(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955349

RESUMO

The following article discusses the antioxidant properties of mandelic acid and its hydroxy and methoxy derivatives. The antioxidant capacity of these compounds is determined by DPPH, FRAP, CUPRAC and ABTS. The mechanisms underlying the antioxidant properties are described by BDE, IP, PDE, ETE and PA calculation method values and referenced to experimental data. Thermochemistry, HOMO/LUMO energies, dipole moments, charge distribution, IR, RAMAN, NMR frequencies, binding lengths and angles were calculated using the B3LYP method and the 6-311++G(d,p) basis set. The structure of mandelic acid and its derivatives was determined experimentally using IR and RAMAN spectroscopy.

5.
Front Pharmacol ; 12: 709104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393787

RESUMO

The coronavirus pandemic (SARS CoV-2) that has existed for over a year, constantly forces scientists to search for drugs against this virus. In silico research and selected experimental data have shown that compounds of natural origin such as phenolic acids and flavonoids have promising antiviral potential. Phenolic compounds inhibit multiplication of viruses at various stages of the viral life cycle, e.g., attachment (disturbance of the interaction between cellular and viral receptors), penetration (inhibition of viral pseudo-particle fusion to the host membrane), replication (inhibition of integrase and 3C-like protease), assembly and maturation (inhibition of microsomal triglyceride transfer protein (MTP) activity hydrolysis) and release (inhibition of secretion of apolipoprotein B (apoB) from infected cells). Phenolic compounds also indirectly influence on the viral life cycle by affecting the host cell's biochemical processes that viruses use for their own benefit. Phenolic compounds may inhibit the proteasomes and cellular deubiquitinating activity that causes an increase in the ubiquitinated proteins level in host cells. This, in turn, contributes to the lowering the available ubiquitin molecules that viruses could use for their own replication. One of the drug design strategy for the treatment of viral diseases may be an enhancement of the antiviral properties of phenolic compounds by metal complexation. Many studies have shown that the presence of a metal ion in the structure can significantly affect the affinity of the compound to key structural elements of the SARS CoV-2, such as Mpro protease, RNA-dependent RNA polymerase (RdRp) and spike protein. We believe that in the era of coronavirus pandemic, it is necessary to reconsider the search for therapeutics among well-known compounds of plant origin and their metal complexes.

6.
Materials (Basel) ; 14(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921014

RESUMO

Since the last few years, the growing interest in the use of natural and synthetic antioxidants as functional food ingredients and dietary supplements, is observed. The imbalance between the number of antioxidants and free radicals is the cause of oxidative damages of proteins, lipids, and DNA. The aim of the study was the review of recent developments in antioxidants. One of the crucial issues in food technology, medicine, and biotechnology is the excess free radicals reduction to obtain healthy food. The major problem is receiving more effective antioxidants. The study aimed to analyze the properties of efficient antioxidants and a better understanding of the molecular mechanism of antioxidant processes. Our researches and sparing literature data prove that the ligand antioxidant properties complexed by selected metals may significantly affect the free radical neutralization. According to our preliminary observation, this efficiency is improved mainly by the metals of high ion potential, e.g., Fe(III), Cr(III), Ln(III), Y(III). The complexes of delocalized electronic charge are better antioxidants. Experimental literature results of antioxidant assays, such as diphenylpicrylhydrazyl (DPPH) and ferric reducing activity power assay (FRAP), were compared to thermodynamic parameters obtained with computational methods. The mechanisms of free radicals creation were described based on the experimental literature data. Changes in HOMO energy distribution in phenolic acids with an increasing number of hydroxyl groups were observed. The antioxidant properties of flavonoids are strongly dependent on the hydroxyl group position and the catechol moiety. The number of methoxy groups in the phenolic acid molecules influences antioxidant activity. The use of synchrotron techniques in the antioxidants electronic structure analysis was proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA