Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(23): 12897-12903, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457137

RESUMO

Over the past half century, migratory birds in North America have shown divergent population trends relative to resident species, with the former declining rapidly and the latter increasing. The role that climate change has played in these observed trends is not well understood, despite significant warming over this period. We used 43 y of monitoring data to fit dynamic species distribution models and quantify the rate of latitudinal range shifts in 32 species of birds native to eastern North America. Since the early 1970s, species that remain in North America throughout the year, including both resident and migratory species, appear to have responded to climate change through both colonization of suitable area at the northern leading edge of their breeding distributions and adaption in place at the southern trailing edges. Neotropical migrants, in contrast, have shown the opposite pattern: contraction at their southern trailing edges and no measurable shifts in their northern leading edges. As a result, the latitudinal distributions of temperate-wintering species have increased while the latitudinal distributions of neotropical migrants have decreased. These results raise important questions about the mechanisms that determine range boundaries of neotropical migrants and suggest that these species may be particularly vulnerable to future climate change. Our results highlight the potential importance of climate change during the nonbreeding season in constraining the response of migratory species to temperature changes at both the trailing and leading edges of their breeding distributions. Future research on the interactions between breeding and nonbreeding climate change is urgently needed.


Assuntos
Distribuição Animal/fisiologia , Migração Animal/fisiologia , Aves/fisiologia , Mudança Climática , Animais , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Geografia , América do Norte , Dinâmica Populacional/estatística & dados numéricos , Estações do Ano
2.
Ecol Appl ; 27(3): 916-924, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28036137

RESUMO

Integrated population models (IPMs) provide a unified framework for simultaneously analyzing data sets of different types to estimate vital rates, population size, and dynamics; assess contributions of demographic parameters to population changes; and assess population viability. Strengths of an IPM include the ability to estimate latent parameters and improve the precision of parameter estimates. We present a hierarchical IPM that combines two broad-scale avian monitoring data sets: count data from the North American Breeding Bird Survey (BBS) and capture-recapture data from the Monitoring Avian Productivity and Survivorship (MAPS) program. These data sets are characterized by large numbers of sample sites and observers, factors capable of inducing error in the sampling and observation processes. The IPM integrates the data sets by modeling the population abundance as a first-order autoregressive function of the previous year's population abundance and vital rates. BBS counts were modeled as a log-linear function of the annual index of population abundance, observation effects (observer identity and first survey year), and overdispersion. Vital rates modeled included adult apparent survival, estimated from a transient Cormack-Jolly-Seber model using MAPS data, and recruitment (surviving hatched birds from the previous season + dispersing adults) estimated as a latent parameter. An assessment of the IPM demonstrated it could recover true parameter values from 200 simulated data sets. The IPM was applied to data sets (1992-2008) of two bird species, Gray Catbird (Dumetella carolinensis) and Wood Thrush (Hylocichla mustelina) in the New England/Mid-Atlantic coastal Bird Conservation Region of the United States. The Gray Catbird population was relatively stable (trend +0.4% per yr), while the Wood Thrush population nearly halved (trend -4.5% per yr) over the 17-yr study period. IPM estimates of population growth rates, adult survival, and detection and residency probabilities were similar and as precise as estimates from the stand-alone BBS and CJS models. A benefit of using the IPM was its ability to estimate the latent recruitment parameter. Annual growth rates for both species correlated more with recruitment than survival, and the relationship for Wood Thrush was stronger than for Gray Catbird. The IPM's unified modeling framework facilitates integration of these important data sets.


Assuntos
Aves Canoras , Animais , Mid-Atlantic Region , Modelos Biológicos , New England , Dinâmica Populacional , Estações do Ano
3.
Glob Chang Biol ; 22(10): 3273-85, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26990459

RESUMO

There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997-2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection - a new extension to correlated detection occupancy models - were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.


Assuntos
Aves , Animais , Biodiversidade , Clima , Ecologia , Modelos Biológicos , Dinâmica Populacional
4.
Sci Rep ; 9(1): 12805, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488867

RESUMO

Species distributions are determined by the interaction of multiple biotic and abiotic factors, which produces complex spatial and temporal patterns of occurrence. As habitats and climate change due to anthropogenic activities, there is a need to develop species distribution models that can quantify these complex range dynamics. In this paper, we develop a dynamic occupancy model that uses a spatial generalized additive model to estimate non-linear spatial variation in occupancy not accounted for by environmental covariates. The model is flexible and can accommodate data from a range of sampling designs that provide information about both occupancy and detection probability. Output from the model can be used to create distribution maps and to estimate indices of temporal range dynamics. We demonstrate the utility of this approach by modeling long-term range dynamics of 10 eastern North American birds using data from the North American Breeding Bird Survey. We anticipate this framework will be particularly useful for modeling species' distributions over large spatial scales and for quantifying range dynamics over long temporal scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA