Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Acta Haematol ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402867

RESUMO

INTRODUCTION: Targeting the B cell receptor (BCR) pathway via ibrutinib, a specific inhibitor of Bruton's tyrosine kinase, has shown marked clinical efficacy in treatment of patients with chronic lymphocytic leukemia (CLL), thus becoming a preferred first line option independent of risk factors. However, acquired resistance to ibrutinib poses a major clinical problem and requires the development of novel treatment combinations to increase efficacy and counteract resistance development and clinical relapse rates. CASE PRESENTATION: In this study, we performed exome and transcriptome analyses of an ibrutinib resistant CLL patient in order to investigate genes and expression patterns associated with ibrutinib resistance. Here we provide evidence that ibrutinib resistance can be attributed to aberrant mammalian target of rapamycin (MTOR) signaling. CONCLUSION: Thus, our study proposes that combined use of MTOR inhibitors with ibrutinib could be a possible option to overcome therapy resistance in ibrutinib treated patients.

2.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502317

RESUMO

Chronic lymphocytic leukemia (CLL) is considered a clonal B cell malignancy. Sporadically, CLL cases with multiple productive heavy and light-chain rearrangements were detected, thus leading to a bi- or oligoclonal CLL disease with leukemic cells originating either from different B cells or otherwise descending from secondary immunoglobulin rearrangement events. This suggests a potential role of clonal hematopoiesis or germline predisposition in these cases. During the screening of 75 CLL cases for kappa and lambda light-chain rearrangements, we could detect a single case with CLL cells expressing two distinct kappa and lambda light chains paired with two separate immunoglobulin heavy-chain variable regions. Furthermore, this patient also developed a prostate carcinoma. Targeted genome sequencing of highly purified light-chain specific CLL clones from this patient and from the prostate carcinoma revealed the presence of a rare germline polymorphism in the POLE gene. Hence, our data suggest that the detected SNP may predispose for cancer, particularly for CLL.


Assuntos
Processamento Alternativo , DNA Polimerase II/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia , Humanos , Leucemia Linfocítica Crônica de Células B/complicações , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/complicações , Neoplasias da Próstata/genética
3.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206229

RESUMO

The reinvigoration of anti-cancer immunity by immune checkpoint therapies has greatly improved cancer treatment. In chronic lymphocytic leukemia (CLL), patients as well as in the Tcl1 mouse model for CLL, PD1-expressing, exhausted T cells significantly expand alongside CLL development; nevertheless, PD1 inhibition has no clinical benefit. Hence, exhausted T cells are either not activatable by simple PD1 blocking in CLL and/or only an insufficient number of exhausted T cells are CLL-specific. In this study, we examined the latter hypothesis by exploiting the Tcl1 transgenic CLL mouse model in combination with TCR transgene expression specific for a non-cancer antigen. Following CLL tumor development, increased PD1 levels were detected on non-CLL specific T cells that seem dependent on the presence of (tumor-) antigen-specific T cells. Transcriptome analysis confirmed a similar exhaustion phenotype of non-CLL specific and endogenous PD1pos T cells. Our results indicate that in the CLL mouse model, a substantial fraction of non-CLL specific T cells becomes exhausted during disease progression in a bystander effect. These findings have important implications for the general efficacy assessment of immune checkpoint therapies in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/fisiopatologia , Proteínas Proto-Oncogênicas/genética , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/imunologia , Camundongos , Camundongos Transgênicos
4.
Technol Cancer Res Treat ; 23: 15330338241252706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766867

RESUMO

Objectives: In this study, stool samples were evaluated for tumor mutation analysis via a targeted next generation sequencing (NGS) approach in a small patient cohort suffering from localized rectal cancer. Introduction: Colorectal cancer (CRC) causes the second highest cancer-related death rate worldwide. Thus, improvements in disease assessment and monitoring that may facilitate treatment allocation and allow organ-sparing "watch-and-wait" treatment strategies are highly relevant for a significant number of CRC patients. Methods: Stool-based results were compared with mutation profiles derived from liquid biopsies and the gold standard procedure of tumor biopsy from the same patients. A workflow was established that enables the detection of de-novo tumor mutations in stool samples of CRC patients via ultra-sensitive cell-free tumor DNA target enrichment. Results: Notably, only a 19% overall concordance was found in mutational profiles across the compared sample specimens of stool, tumor, and liquid biopsies. Conclusion: Based on these results, the analysis of stool and liquid biopsy samples can provide important additional information on tumor heterogeneity and potentially on the assessment of minimal residual disease and clonal tumor evolution.


Assuntos
Biomarcadores Tumorais , Fezes , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias Retais , Humanos , Fezes/química , Neoplasias Retais/genética , Neoplasias Retais/patologia , Neoplasias Retais/sangue , Biomarcadores Tumorais/genética , Biópsia Líquida/métodos , Feminino , Masculino , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Pessoa de Meia-Idade , Idoso , Análise Mutacional de DNA , Heterogeneidade Genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética
5.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439381

RESUMO

(1) Background: Aberrant activation of the hedgehog (HH)-GLI pathway in stem-like tumor-initiating cells (TIC) is a frequent oncogenic driver signal in various human malignancies. Remarkable efficacy of anti-HH therapeutics led to the approval of HH inhibitors targeting the key pathway effector smoothened (SMO) in basal cell carcinoma and acute myeloid leukemia. However, frequent development of drug resistance and severe adverse effects of SMO inhibitors pose major challenges that require alternative treatment strategies targeting HH-GLI in TIC downstream of SMO. We therefore investigated members of the casein kinase 1 (CSNK1) family as novel drug targets in HH-GLI-driven malignancies. (2) Methods: We genetically and pharmacologically inhibited CSNK1D in HH-dependent cancer cells displaying either sensitivity or resistance to SMO inhibitors. To address the role of CSNK1D in oncogenic HH signaling and tumor growth and initiation, we quantitatively analyzed HH target gene expression, performed genetic and chemical perturbations of CSNK1D activity, and monitored the oncogenic transformation of TIC in vitro and in vivo using 3D clonogenic tumor spheroid assays and xenograft models. (3) Results: We show that CSNK1D plays a critical role in controlling oncogenic GLI activity downstream of SMO. We provide evidence that inhibition of CSNK1D interferes with oncogenic HH signaling in both SMO inhibitor-sensitive and -resistant tumor settings. Furthermore, genetic and pharmacologic perturbation of CSNK1D decreases the clonogenic growth of GLI-dependent TIC in vitro and in vivo. (4) Conclusions: Pharmacologic targeting of CSNK1D represents a novel therapeutic approach for the treatment of both SMO inhibitor-sensitive and -resistant tumors.

6.
Oncotarget ; 7(6): 7134-48, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26784250

RESUMO

A wide range of human malignancies displays aberrant activation of Hedgehog (HH)/GLI signaling, including cancers of the skin, brain, gastrointestinal tract and hematopoietic system. Targeting oncogenic HH/GLI signaling with small molecule inhibitors of the essential pathway effector Smoothened (SMO) has shown remarkable therapeutic effects in patients with advanced and metastatic basal cell carcinoma. However, acquired and de novo resistance to SMO inhibitors poses severe limitations to the use of SMO antagonists and urgently calls for the identification of novel targets and compounds.Here we report on the identification of the Dual-Specificity-Tyrosine-Phosphorylation-Regulated Kinase 1B (DYRK1B) as critical positive regulator of HH/GLI signaling downstream of SMO. Genetic and chemical inhibition of DYRK1B in human and mouse cancer cells resulted in marked repression of HH signaling and GLI1 expression, respectively. Importantly, DYRK1B inhibition profoundly impaired GLI1 expression in both SMO-inhibitor sensitive and resistant settings. We further introduce a novel small molecule DYRK1B inhibitor, DYRKi, with suitable pharmacologic properties to impair SMO-dependent and SMO-independent oncogenic GLI activity. The results support the use of DYRK1B antagonists for the treatment of HH/GLI-associated cancers where SMO inhibitors fail to demonstrate therapeutic efficacy.


Assuntos
Carcinoma Basocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fatores de Transcrição Forkhead/fisiologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/genética , Quinases Dyrk
7.
Oncotarget ; 10(49): 5005-5006, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31489109
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA