Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2020: 3824593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343230

RESUMO

Tantalum (Ta) is gaining attention as a biomaterial in bone tissue engineering. Although the clinical advantage of Ta-based implants for primary and revision total joint replacement (TJA) has been well documented, few studies investigated the effect of wear products of Ta implants on peri-implant cells, and their potential contribution to aseptic implant loosening. This study is aimed at examining the cytotoxicity, oxidative stress, and proinflammatory potential of Ta and TiO2 nanoparticles (NPs) on macrophages in vitro. NPs were characterized using scanning electron microscopy, dynamic light scattering, and energy-dispersive X-ray. To test the NP-mediated cellular response in macrophages, THP-1-derived macrophages were challenged with both NPs, and cytotoxicity was analyzed using CCK-8 and LDH assays. Flow cytometry was used to investigate particle uptake and their internalization routes. NP-mediated oxidative stress was investigated by measuring the production of reactive oxygen species, and their proinflammatory potential was determined by quantifying the production of TNFα and IL-1ß in cell culture supernatants using ELISA. We found that both Ta and TiO2 NPs were taken up through actin-dependent phagocytosis, although TiO2 NPs did also show some involvement of macropinocytosis and clathrin-mediated endocytosis. Ta NPs caused no apparent toxicity, while TiO2 NPs demonstrated significant cytotoxicity at a concentration of over 100µg/mL at 24 h. Ta NPs induced negligible ROS generation and proinflammatory cytokines (TNFα, IL-1ß) in macrophages. In contrast, TiO2 NPs markedly induced these effects in a dose-dependent manner. Our findings indicate that Ta NPs are inert, nontoxic, and noninflammatory. Therefore, Ta could be considered an excellent biomaterial in primary and revision joint arthroplasty implants.


Assuntos
Inflamação/induzido quimicamente , Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tantálio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-1beta/biossíntese , Nanopartículas/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/biossíntese
2.
Oecologia ; 184(3): 609-621, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28616633

RESUMO

Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.


Assuntos
Clima , Florestas , Fotossíntese , Folhas de Planta , Estômatos de Plantas , Taiwan
3.
Front Plant Sci ; 14: 1275358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098798

RESUMO

Introduction: Many atmospheric aerosols are hygroscopic and play an important role in cloud formation. Similarly, aerosols become sites of micro-condensation when they deposit to the upper and lower surfaces of leaves. Deposited salts, in particular can trigger condensation at humidities considerably below atmospheric saturation, according to their hygroscopicity and the relative humidity within the leaf boundary layer. Salt induced water potential gradients and the resulting dynamics of concentrated salt solutions can be expected to affect plant water relations. Methods: Hydroponic sunflowers were grown in filtered (FA) and unfiltered, ambient air (AA). Sap flow was measured for 18 days and several indicators of incipient drought stress were studied. Results: At 2% difference in mean vapor pressure deficit (D), AA sunflowers had 49% higher mean transpiration rates, lower osmotic potential, higher proline concentrations, and different tracer transport patterns in the leaf compared to FA sunflowers. Aerosols increased plant conductance particularly at low D. Discussion: The proposed mechanism is that thin aqueous films of salt solutions from deliquescent deposited aerosols enter into stomata and cause an extension of the hydraulic system. This hydraulic connection leads - parallel to stomatal water vapor transpiration - to wick-like stomatal loss of liquid water and to a higher impact of D on plant water loss. Due to ample water supply by hydroponic cultivation, AA plants thrived as well as FA plants, but under more challenging conditions, aerosol deposits may make plants more susceptible to drought stress.

4.
New Phytol ; 196(3): 774-787, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22985197

RESUMO

The recent visualization of stomatal nanoparticle uptake ended a 40-yr-old paradigm. Assuming clean, hydrophobic leaf surfaces, the paradigm considered stomatal liquid water transport to be impossible as a result of water surface tension. However, real leaves are not clean, and deposited aerosols may change hydrophobicity and water surface tension. Droplets containing NaCl, NaClO(3), (NH(4))(2) SO(4), glyphosate, an organosilicone surfactant or various combinations thereof were evaporated on stomatous abaxial and astomatous adaxial surfaces of apple (Malus domestica) leaves. The effects on photosynthesis, necrosis and biomass were determined. Observed using an environmental scanning electron microscope, NaCl and NaClO(3) crystals on hydrophobic tomato (Solanum lycopersicum) cuticles underwent several humidity cycles, causing repeated deliquescence and efflorescence of the salts. All physiological parameters were more strongly affected by abaxial than adaxial treatments. Spatial expansion and dendritic crystallization of the salts occurred and cuticular hydrophobicity was decreased more rapidly by NaClO(3) than NaCl. The results confirmed the stomatal uptake of aqueous solutions. Humidity fluctuations promote the spatial expansion of salts into the stomata. The ion-specific effects point to the Hofmeister series: chaotropic ions reduce surface tension, probably contributing to the defoliant action of NaClO(3), whereas the salt spray tolerance of coastal plants is probably linked to the kosmotropic nature of chloride ions.


Assuntos
Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Água/metabolismo , Sulfato de Amônio/farmacologia , Transporte Biológico , Cloratos/farmacologia , Clorofila/metabolismo , Fluorescência , Glicina/análogos & derivados , Glicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Malus/efeitos dos fármacos , Malus/fisiologia , Microscopia Eletrônica de Varredura/métodos , Fotossíntese , Complexo de Proteína do Fotossistema II/fisiologia , Doenças das Plantas/induzido quimicamente , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura , Transpiração Vegetal , Cloreto de Sódio/metabolismo , Soluções/metabolismo , Tensão Superficial , Glifosato
5.
ACS Appl Mater Interfaces ; 14(25): 28412-28426, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604777

RESUMO

In times of a constantly growing world population and increasing demand for food, sustainable agriculture is crucial. The rainfastness of plant protection agents is of pivotal importance to reduce the amount of applied nutrients, herbicides, and fungicides. As a result of protective agent wash-off, plant protection is lost, and soils and groundwater are severely polluted. To date, rainfastness of plant protection products has been achieved by adding polymeric adjuvants to the agrochemicals. However, polymeric adjuvants will be regarded as microplastics in the future, and environmentally friendly alternatives are needed. Anchor peptides (APs) are promising biobased and biodegradable adhesion promoters. Although the adhesion of anchor peptides to artificial surfaces, such as polymers, has already been investigated in theory and experimentally, exploiting the adhesion to biological surfaces remains challenging. The complex nature and composition of biological surfaces such as plant leaves and fruit surfaces complicate the generation of accurate models. Here, we present the first detailed three-layered atomistic model of the surface of apple leaves and use it to compute free energy profiles of the adhesion and desorption of APs to and from that surface. Our model is validated by a novel fluorescence-based microtiter plate (MTP) assay that mimics these complex processes and allows for quantifying them. For the AP Macaque Histatin, we demonstrate that aromatic and positively charged amino acids are essential for binding to the waxy apple leaf surface. The established protocols should generally be applicable for tailoring the binding properties of APs to biological interfaces.


Assuntos
Fungicidas Industriais , Plásticos , Peptídeos/análise , Folhas de Planta/química , Ceras/química
6.
Plant Physiol Biochem ; 132: 229-237, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30219740

RESUMO

Adjuvants such as surfactants are commonly incorporated into agrochemical formulations to enhance the biological efficiency of foliar sprays by improving the wetting behavior of the spray and/or the penetration of the active ingredients into the leaf tissues. Penetration accelerating adjuvants are known to increase the cuticular permeability and may alter the cuticular barrier to water loss. However, none or very little emphasis has been given to the impacts of adjuvants on crop water balance or drought tolerance, a very important factor affecting crop performance under water scarcity. Two model crops with strongly varying leaf traits, kohlrabi (Brassica oleracea) and apple (Malus domestica) seedlings were grown in controlled environments. Three adjuvants with varying solubility in the cuticle, i.e. octanol-water partition coefficients (logKow) were selected: rapeseed methyl ester (RME) and the surfactants alkyl polyglycoside (APG) and polyoxyethylated tallow amine (POEA). The higher the logKow of the adjuvant, the stronger was the increase of minimum epidermal conductance (gmin, an essential parameter describing plant drought tolerance). However, such effects depended on the physio-chemical properties of the leaf surface. In comparison to kohlrabi, the adjuvant effects on gmin of apple leaves were relatively weak. The increase of gmin was associated with a decrease in contact angle and with an alteration of the wax microstructure. Furthermore, POEA affected photochemical efficiency of kohlrabi leaves. Some adjuvants could have a temporal influence on transpirational water loss and gmin. At repeated applications, they might alter the effective water use and possibly reduce drought tolerance of some horticultural crops.


Assuntos
Agricultura , Brassica/fisiologia , Malus/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Tensoativos/farmacologia , Brassica/efeitos dos fármacos , Fluorescência , Malus/efeitos dos fármacos , Epiderme Vegetal/ultraestrutura , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Fatores de Tempo , Água , Ceras/metabolismo
7.
Environ Pollut ; 184: 659-67, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23791043

RESUMO

Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Pinus sylvestris/fisiologia , Adaptação Fisiológica , Secas , Pinus sylvestris/ultraestrutura , Estações do Ano , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA