Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002468, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271330

RESUMO

In vertebrates, olfactory receptors localize on multiple cilia elaborated on dendritic knobs of olfactory sensory neurons (OSNs). Although olfactory cilia dysfunction can cause anosmia, how their differentiation is programmed at the transcriptional level has remained largely unexplored. We discovered in zebrafish and mice that Foxj1, a forkhead domain-containing transcription factor traditionally linked with motile cilia biogenesis, is expressed in OSNs and required for olfactory epithelium (OE) formation. In keeping with the immotile nature of olfactory cilia, we observed that ciliary motility genes are repressed in zebrafish, mouse, and human OSNs. Strikingly, we also found that besides ciliogenesis, Foxj1 controls the differentiation of the OSNs themselves by regulating their cell type-specific gene expression, such as that of olfactory marker protein (omp) involved in odor-evoked signal transduction. In line with this, response to bile acids, odors detected by OMP-positive OSNs, was significantly diminished in foxj1 mutant zebrafish. Taken together, our findings establish how the canonical Foxj1-mediated motile ciliogenic transcriptional program has been repurposed for the biogenesis of immotile olfactory cilia, as well as for the development of the OSNs.


Assuntos
Neurônios Receptores Olfatórios , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cílios/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mucosa Olfatória
2.
Muscle Nerve ; 69(4): 498-503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294129

RESUMO

INTRODUCTION/AIMS: Oxaliplatin is a platinum-based anti-cancer drug widely used in colorectal cancer patients, but it may cause peripheral neuropathy. As one of the main causes of oxaliplatin-induced peripheral neuropathy (OPN) is oxidative stress, which is also a key factor causing diabetic peripheral neuropathy (DPN), the aim of this study was to evaluate the preventive effects of alpha-lipoic acid (ALA) and epalrestat (EP), which are used for the treatment of DPN, in an OPN zebrafish model. METHODS: Tg(nbt:dsred) transgenic zebrafish, with sensory nerves in the peripheral lateral line, were treated with oxaliplatin, oxaliplatin/EP, and oxaliplatin/ALA for 4 days. A confocal microscope was used to visualize and quantify the number of axon bifurcations in the distal nerve ending. To analyze the formation of synapses on sensory nerve terminals, quantification of membrane-associated guanylate kinase (MAGUK) puncta was performed using immunohistochemistry. RESULTS: The number of axon bifurcations and intensity of MAGUK puncta were significantly reduced in the oxaliplatin-treated group compared with those in the embryo medium-treated group. In both the oxaliplatin/EP and oxaliplatin/ALA-treated groups, the number of axon bifurcations and intensity of MAGUK puncta were greater than those in the oxaliplatin-treated group (p < .0001), and no significant difference was observed between larvae treated with oxaliplatin/ALA 1 µM and oxaliplatin/EP 1 µM (p = .4292). DISCUSSION: ALA and EP have protective effects against OPN in zebrafish. Our findings show that ALA and EP can facilitate more beneficial treatment for OPN.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Rodanina/análogos & derivados , Tiazolidinas , Ácido Tióctico , Animais , Humanos , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Peixe-Zebra , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Antineoplásicos/toxicidade
3.
Cell Rep ; 43(6): 114331, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38843394

RESUMO

The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.


Assuntos
Ventrículos Cerebrais , Plexo Corióideo , Homeostase , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Plexo Corióideo/metabolismo , Ventrículos Cerebrais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Líquido Cefalorraquidiano/metabolismo , Células Epiteliais/metabolismo , Evolução Biológica , Barreira Hematoencefálica/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38130142

RESUMO

Objective: Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The treatment of PD aims to alleviate motor symptoms by replacing the reduced endogenous dopamine. Currently, there are no disease-modifying agents for the treatment of PD. Zebrafish (Danio rerio) have emerged as an effective tool for new drug discovery and screening in the age of translational research. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known to cause a similar loss of dopaminergic neurons in the human midbrain, with corresponding Parkinsonian symptoms. L-type calcium channels (LTCCs) have been implicated in the generation of mitochondrial oxidative stress, which underlies the pathogenesis of Parkinson's disease. Therefore, we investigated the neuro-restorative effect of LTCC inhibition in an MPTP-induced zebrafish PD model and suggested a possible drug candidate that might modify the progression of PD. Methods: All experiments were conducted using a line of transgenic zebrafish, Tg (dat:EGFP), in which green fluorescent protein (GFP) is expressed in dopaminergic neurons. The experimental groups were exposed to 500µã– MPTP from 1 to 3 days post fertilization (dpf). The drug candidates: Levodopa 1m㏖, Nifedipine 10µã–, Nimodipine 3.5 µã–, Diethylstilbestrol 0.3 µã–, Luteolin 100 µã–, Cacitriol 0.25 µã– were exposed from 3 to 5 dpf. Locomotor activity was assessed by automated tracking and dopaminergic neurons were visualized in vivo by confocal microscopy. Results: Levodopa, Nimodipine, Diethylstilbestrol, and Calcitriol had significant positive effects on the restoration of motor behavior, which was damaged by MPTP. Nimodipine and Calcitriol have significant positive effects on the restoration of dopaminergic neurons, which were reduced by MPTP. Through locomotor analysis and dopaminergic neuron quantification, we identified the neuro-restorative effects of Nimodipine and Calcitriol in Zebrafish MPTP-induced PD model. Conclusion: The present study identified the neuro-restorative effects of nimodipine and calcitriol in an MPTP-induced zebrafish model of Parkinson's disease. They restored dopaminergic neurons which were damaged due to the effects of MPTP and normalized the locomotor activity. LTCCs have potential pathological roles in neurodevelopmental and neurodegenerative disorders. Zebrafish are highly amenable to high-throughput drug screening and might, therefore, be a useful tool to work towards the identification of disease-modifying treatment for PD. Further studies including zebrafish genetic models to elucidate the mechanism of action of the disease-modifying candidate by investigating Ca2+ influx and mitochondrial function in dopaminergic neurons, are needed to reveal the pathogenesis of PD and develop disease-modifying treatments for PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA