Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Annu Rev Physiol ; 84: 611-629, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724436

RESUMO

The use of electronic (e)-cigarettes was initially considered a beneficial solution to conventional cigarette smoking cessation. However, paradoxically, e-cigarette use is rapidly growing among nonsmokers, including youth and young adults. In 2019, this rapid growth resulted in an epidemic of hospitalizations and deaths of e-cigarette users (vapers) due to acute lung injury; this novel disease was termed e-cigarette or vaping use-associated lung injury (EVALI). Pathophysiologic mechanisms of EVALI likely involve cytotoxicity and neutrophilic inflammation caused by inhaled chemicals, but further details remain unknown. The undiscovered mechanisms of EVALI are a barrier to identifying biomarkers and developing therapeutics. Furthermore, adverse effects of e-cigarette use have been linked to chronic lung diseases and systemic effects on multiple organs. In this comprehensive review, we discuss the diverse spectrum of vaping exposures, epidemiological and clinical reports, and experimental findings to provide a better understanding of EVALI and the adverse health effects of chronic e-cigarette exposure.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Pneumonia , Vaping , Adolescente , Biomarcadores , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/epidemiologia , Pneumonia/etiologia , Vaping/efeitos adversos , Vaping/epidemiologia , Adulto Jovem
2.
Am J Respir Cell Mol Biol ; 70(1): 26-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699145

RESUMO

Airway basal stem cells (BSCs) play a critical role in epithelial regeneration. Whether coronavirus disease (COVID-19) affects BSC function is unknown. Here, we derived BSC lines from patients with COVID-19 using tracheal aspirates (TAs) to circumvent the biosafety concerns of live-cell derivation. We show that BSCs derived from the TAs of control patients are bona fide bronchial BSCs. TA BSCs from patients with COVID-19 tested negative for severe acute respiratory syndrome coronavirus 2 RNA; however, these so-termed COVID-19-exposed BSCs in vitro resemble a predominant BSC subpopulation uniquely present in patients with COVID-19, manifested by a proinflammatory gene signature and STAT3 hyperactivation. Furthermore, the sustained STAT3 hyperactivation drives goblet cell differentiation of COVID-19-exposed BSCs in an air-liquid interface. Last, these phenotypes of COVID-19-exposed BSCs can be induced in control BSCs by cytokine cocktail pretreatment. Taken together, acute inflammation in COVID-19 exerts a long-term impact on mucociliary differentiation of BSCs.


Assuntos
COVID-19 , Células Epiteliais , Humanos , Células-Tronco , Diferenciação Celular/fisiologia , Brônquios
3.
Artigo em Inglês | MEDLINE | ID: mdl-38772903

RESUMO

Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade increasing evidence from preclinical models suggests that cells, which are not normally resident in the lung can be utilized to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathologic remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "-omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.

4.
Eur Respir J ; 63(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514093

RESUMO

RATIONALE: Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES: To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS: In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS: GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS: GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Asma , Gasderminas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Asma/metabolismo , Asma/genética , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Predisposição Genética para Doença , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/genética , Células Epiteliais/metabolismo , Linhagem Celular , Brônquios/metabolismo , Brônquios/patologia , Pneumonia/metabolismo , Pneumonia/genética , Pneumonia/virologia , Feminino , Pulmão/metabolismo , Pulmão/patologia
5.
Am J Respir Cell Mol Biol ; 68(6): 664-678, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36753317

RESUMO

Histological and lineage immunofluorescence examination revealed that healthy conducting airways of humans and animals harbor sporadic poorly differentiated epithelial patches mostly in the dorsal noncartilage regions that remarkably manifest squamous differentiation. In vitro analysis demonstrated that this squamous phenotype is not due to intrinsic functional change in underlying airway basal cells. Rather, it is a reversible physiological response to persistent Wnt signaling stimulation during de novo differentiation. Squamous epithelial cells have elevated gene signatures of glucose uptake and cellular glycolysis. Inhibition of glycolysis or a decrease in glucose availability suppresses Wnt-induced squamous epithelial differentiation. Compared with pseudostratified airway epithelial cells, a cascade of mucosal protective functions is impaired in squamous epithelial cells, featuring increased epithelial permeability, spontaneous epithelial unjamming, and enhanced inflammatory responses. Our study raises the possibility that the squamous differentiation naturally occurring in healthy airways identified herein may represent "vulnerable spots" within the airway mucosa that are sensitive to damage and inflammation when confronted by infection or injury. Squamous metaplasia and hyperplasia are hallmarks of many airway diseases, thereby expanding these areas of vulnerability with potential pathological consequences. Thus, investigation of physiological and reversible squamous differentiation from healthy airway basal cells may provide critical knowledge to understand pathogenic squamous remodeling, which is often nonreversible, progressive, and hyperinflammatory.


Assuntos
Carcinoma de Células Escamosas , Sistema Respiratório , Animais , Humanos , Sistema Respiratório/patologia , Células Epiteliais , Diferenciação Celular/fisiologia , Imunidade Inata , Carcinoma de Células Escamosas/patologia
6.
Respir Res ; 24(1): 205, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598152

RESUMO

BACKGROUND: Rhinovirus (RV) infection of airway epithelial cells triggers asthma exacerbations, during which airway smooth muscle (ASM) excessively contracts. Due to ASM contraction, airway epithelial cells become mechanically compressed. We previously reported that compressed human bronchial epithelial (HBE) cells are a source of endothelin-1 (ET-1) that causes ASM contraction. Here, we hypothesized that epithelial sensing of RV by TLR3 and epithelial compression induce ET-1 secretion through a TGF-ß receptor (TGFßR)-dependent mechanism. METHODS: To test this, we used primary HBE cells well-differentiated in air-liquid interface culture and two mouse models (ovalbumin and house dust mite) of allergic airway disease (AAD). HBE cells were infected with RV-A16, treated with a TLR3 agonist (poly(I:C)), or exposed to compression. Thereafter, EDN1 (ET-1 protein-encoding gene) mRNA expression and secreted ET-1 protein were measured. We examined the role of TGFßR in ET-1 secretion using either a pharmacologic inhibitor of TGFßR or recombinant TGF-ß1 protein. In the AAD mouse models, allergen-sensitized and allergen-challenged mice were subsequently infected with RV. We then measured ET-1 in bronchoalveolar lavage fluid (BALF) and airway hyperresponsiveness (AHR) following methacholine challenge. RESULTS: Our data reveal that RV infection induced EDN1 expression and ET-1 secretion in HBE cells, potentially mediated by TLR3. TGFßR activation was partially required for ET-1 secretion, which was induced by RV, poly(I:C), or compression. TGFßR activation alone was sufficient to increase ET-1 secretion. In AAD mouse models, RV induced ET-1 secretion in BALF, which positively correlated with AHR. CONCLUSIONS: Our data provide evidence that RV infection increased epithelial-cell ET-1 secretion through a TGFßR-dependent mechanism, which contributes to bronchoconstriction during RV-induced asthma exacerbations.


Assuntos
Asma , Hipersensibilidade , Humanos , Animais , Camundongos , Endotelina-1 , Rhinovirus , Receptor 3 Toll-Like , Receptores de Fatores de Crescimento Transformadores beta , Asma/induzido quimicamente
7.
Environ Res ; 228: 115812, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030407

RESUMO

BACKGROUND AND OBJECTIVE: Although there are many findings about the effects of fine particulate matter (PM2.5) and sleep deprivation on health respectively, the association between PM2.5 and chronic sleep deprivation has rarely been investigated. Thus, we aimed to investigate this association using a nationwide survey in South Korea. METHOD: We examined the association between long-term exposure to PM2.5 and chronic sleep deprivation using a national cross-sectional health survey covering the entire 226 districts in inland South Korea from 2008 to 2018, with a machine learning-based national air pollution prediction model with 1 km2 spatial resolution. RESULTS: Chronic sleep deprivation was positively associated with PM2.5 in the total population (odds ratio (OR): 1.09, 95% confidence interval (CI): 1.05-1.13) and sub-population (low, middle, high population density areas with OR: 1.127, 1.09, and 1.059, respectively). The association was consistently observed in both sexes (males with OR: 1.09, females with OR: 1.09)) and was more pronounced in the elderly population (OR: 1.12) than in the middle-aged (OR: 1.07) and young (OR: 1.09) populations. CONCLUSIONS: Our results are consistent with the hypothesis regarding the relationship between long-term PM2.5 exposure and chronic sleep deprivation, and the study provides quantitative evidence for public health interventions to improve air quality that can affect chronic sleep conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Idoso , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Estudos Longitudinais , Privação do Sono/epidemiologia , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , República da Coreia/epidemiologia
8.
Comput Inform Nurs ; 41(1): 8-17, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35703232

RESUMO

With the advent of the information age and technological development, the importance of digital health technologies has increased. Subsequently, nursing informatics has been developed to enhance the effectiveness of healthcare information management and communication. This study aimed to identify the nursing informatics knowledge structure and research trends through quantitative analysis using text network analysis. Here, we analyzed 14 225 studies published by 2020. The knowledge structure of nursing informatics and changes therein were clarified by identifying and analyzing the core keywords, topics, and changes in the topics of related studies over time. We identified "patient," "health," "system," and "information" as core keywords connecting other keywords. Over time, the networks between "information," "communication," and "technology" strengthened, and "patient safety" and "quality" have recently emerged as research keywords. This change indicates an increase in the importance of nursing education on technology. Similar changes appeared in the topic analysis, showing an increased proportion of research related to system and technology and nursing education. These results can broaden a systematic understanding of nursing informatics research. Furthermore, given these findings, the importance of nursing informatics on patient safety and nursing education-based on the development of systems and technology-can be expected to continue growing.


Assuntos
Educação em Enfermagem , Informática em Enfermagem , Humanos , Comunicação , Segurança do Paciente
9.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L341-L354, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762622

RESUMO

The 9th biennial conference titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology. The virtual workshop included active discussion on state-of-the-art methods relating to the core features of the 2021 conference, including in situ proteomics, lung-on-chip, induced pluripotent stem cell (iPSC)-airway differentiation, and light sheet microscopy. The conference concluded with an open discussion to suggest funding priorities and recommendations for future research directions in basic and translational lung biology.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Bioengenharia , Biologia , COVID-19/terapia , Humanos , Pulmão , Pandemias
10.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L246-L253, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174447

RESUMO

The COVID-19 pandemic is an ongoing threat to public health. Since the identification of COVID-19, the disease caused by SARS-CoV-2, no drugs have been developed to specifically target SARS-CoV-2. To develop effective and safe treatment options, a better understanding of cellular mechanisms underlying SARS-CoV-2 infection is required. To fill this knowledge gap, researchers require reliable experimental systems that express the host factor proteins necessary for the cellular entry of SARS-CoV-2. These proteins include the viral receptor, angiotensin-converting enzyme 2 (ACE2), and the proteases, transmembrane serine protease 2 (TMPRSS2) and furin. A number of studies have reported cell-type-specific expression of the genes encoding these molecules. However, less is known about the protein expression of these molecules. We assessed the suitability of primary human bronchial epithelial (HBE) cells maintained in an air-liquid interface (ALI) as an experimental system for studying SARS-CoV-2 infection in vitro. During cellular differentiation, we measured the expression of ACE2, TMPRSS2, and furin over progressive ALI days by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence staining. We also explored the effect of the fibrotic cytokine TGF-ß on the expression of these proteins in well-differentiated HBE cells. Like ACE2, TMPRSS2 and furin proteins are localized in differentiated ciliated cells, as confirmed by immunofluorescence staining. These data suggest that well-differentiated HBE cells maintained in ALI are a reliable in vitro system for investigating cellular mechanisms of SARS-CoV-2 infection. We further identified that the profibrotic mediators, TGF-ß1 and TGF-ß2, increase the expression of furin, which is a protease required for the cellular entry of SARS-CoV-2.


Assuntos
Brônquios/metabolismo , COVID-19/etiologia , Furina/metabolismo , SARS-CoV-2 , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Brônquios/citologia , Brônquios/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Suscetibilidade a Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Furina/genética , Expressão Gênica/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Modelos Biológicos , Pandemias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta2/farmacologia , Internalização do Vírus
11.
Am J Respir Crit Care Med ; 202(9): 1225-1236, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32551799

RESUMO

Rationale: Genetic association studies have identified rs2076295 in association with idiopathic pulmonary fibrosis (IPF). We hypothesized that rs2076295 is the functional variant regulating DSP (desmoplakin) expression in human bronchial epithelial cells, and DSP regulates extracellular matrix-related gene expression and cell migration, which is relevant to IPF development.Objectives: To determine whether rs2076295 regulates DSP expression and the function of DSP in airway epithelial cells.Methods: Using CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 editing (including regional deletion, indel, CRISPR interference, and single-base editing), we modified rs2076295 and measured DSP expression in edited 16HBE14o- and primary airway epithelial cells. Cellular integrity, migration, and genome-wide gene expression changes were examined in 16HBE14o- single colonies with DSP knockout. The expression of DSP and its relevant matrix genes was measured by quantitative PCR and also analyzed in single-cell RNA-sequencing data from control and IPF lungs.Measurements and Main Results:DSP is expressed predominantly in bronchial and alveolar epithelial cells, with reduced expression in alveolar epithelial cells in IPF lungs. The deletion of the DNA region-spanning rs2076295 led to reduced expression of DSP, and the edited rs2076295GG 16HBE14o- line has lower expression of DSP than the rs2076295TT lines. Knockout of DSP in 16HBE14o- cells decreased transepithelial resistance but increased cell migration, with increased expression of extracellular matrix-related genes, including MMP7 and MMP9. Silencing of MMP7 and MMP9 abolished increased migration in DSP-knockout cells.Conclusions: rs2076295 regulates DSP expression in human airway epithelial cells. The loss of DSP enhances extracellular matrix-related gene expression and promotes cell migration, which may contribute to the pathogenesis of IPF.


Assuntos
Desmoplaquinas/genética , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/fisiopatologia , Células Epiteliais Alveolares , Células Epiteliais , Humanos
12.
Biochem Biophys Res Commun ; 521(3): 706-715, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31699371

RESUMO

Each cell comprising an intact, healthy, confluent epithelial layer ordinarily remains sedentary, firmly adherent to and caged by its neighbors, and thus defines an elemental constituent of a solid-like cellular collective [1,2]. After malignant transformation, however, the cellular collective can become fluid-like and migratory, as evidenced by collective motions that arise in characteristic swirls, strands, ducts, sheets, or clusters [3,4]. To transition from a solid-like to a fluid-like phase and thereafter to migrate collectively, it has been recently argued that cells comprising the disordered but confluent epithelial collective can undergo changes of cell shape so as to overcome geometric constraints attributable to the newly discovered phenomenon of cell jamming and the associated unjamming transition (UJT) [1,2,5-9]. Relevance of the jamming concept to carcinoma cells lines of graded degrees of invasive potential has never been investigated, however. Using classical in vitro cultures of six breast cancer model systems, here we investigate structural and dynamical signatures of cell jamming, and the relationship between them [1,2,10,11]. In order of roughly increasing invasive potential as previously reported, model systems examined included MCF10A, MCF10A.Vector; MCF10A.14-3-3ζ; MCF10.ErbB2, MCF10AT; and MCF10CA1a [12-15]. Migratory speed depended on the particular cell line. Unsurprisingly, for example, the MCF10CA1a cell line exhibited much faster migratory speed relative to the others. But unexpectedly, across different cell lines higher speeds were associated with enhanced size of cooperative cell packs in a manner reminiscent of a peloton [9]. Nevertheless, within each of the cell lines evaluated, cell shape and shape variability from cell-to-cell conformed with predicted structural signatures of cell layer unjamming [1]. Moreover, both structure and migratory dynamics were compatible with previous theoretical descriptions of the cell jamming mechanism [2,10,11,16,17]. As such, these findings demonstrate the richness of the cell jamming mechanism, which is now seen to apply across these cancer cell lines but remains poorly understood.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Invasividade Neoplásica/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Forma Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Humanos
13.
J Trauma Stress ; 33(3): 353-359, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32216143

RESUMO

Refugees affected by multiple traumatic stressors are at high risk for developing trauma-related mental disorders, including posttraumatic stress disorder (PTSD), depression, and insomnia, which is sometimes overlooked. The present study examined the effectiveness of narrative exposure therapy (NET) on trauma-related symptoms in a sample of North Korean refugee youth. We focused on sleep patterns in addition to changes in symptom severity for PTSD, depression, and internalizing and externalizing symptoms. North Korean refugee youth (N = 20) with PTSD were assigned to either an NET-based treatment group or a control group, which consisted of treatment as usual (TAU). There were clinically significant reductions in PTSD, depression, and internalizing and externalizing symptoms for the NET group, Hedges' g = 3.6, but not the TAU group. The change in diagnostic status for PTSD was more notable for participants in the NET group compared to the TAU group. Of note, NET also produced a significant improvement in insomnia symptoms and sleep quality, Hedges' g = 2.1. The substantial recovery regarding overall posttraumatic symptoms in the NET group was observed 2 weeks after the end of treatment and remained stable at 6-month follow-up. The results of the present study suggest that NET may be a treatment option for traumatized North Korean refugee youth and may also be effective for the treatment of sleep problems that arise from traumatic experiences.


Assuntos
Refugiados/psicologia , Transtornos de Estresse Pós-Traumáticos/terapia , Adolescente , Adulto , Estudos de Casos e Controles , República Democrática Popular da Coreia/etnologia , Depressão/complicações , Feminino , Humanos , Terapia Implosiva , Masculino , República da Coreia , Transtornos do Sono-Vigília/complicações , Transtornos de Estresse Pós-Traumáticos/complicações , Resultado do Tratamento , Adulto Jovem
14.
Am J Respir Cell Mol Biol ; 60(6): 687-694, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30571139

RESUMO

Mucus overproduction is a major contributor to morbidity and mortality in asthma. Mucus overproduction is induced by orchestrated actions of multiple factors that include inflammatory cytokines and γ-aminobutyric acid (GABA). GABA is produced only by pulmonary neuroendocrine cells (PNECs) in the mouse lung. Recent studies in a neonatal mouse model of allergic inflammation have shown that PNECs play an essential role in mucus overproduction by GABA hypersecretion. Whether PNECs mediate dysregulated GABA signaling for mucus overproduction in asthma is unknown. In this study, we characterized the cellular source of GABA in the lungs of nonhuman primates and humans and assessed GABA secretion and signaling in primate disease models. We found that like in mice, PNECs were the major source of GABA in primate lungs. In addition, an infant nonhuman primate model of asthma exhibited an increase in GABA secretion. Furthermore, subjects with asthma had elevated levels of expression of a subset of GABA type α (GABAα) and type ß (GABAß) receptors in airway epithelium compared with those of healthy control subjects. Last, employing a normal human bronchial epithelial cell model of preinduced mucus overproduction, we showed pharmaceutical blockade of GABAα and GABAß receptor signaling reversed the effect of IL-13 on MUC5AC gene expression and goblet cell proliferation. Together, our data demonstrate an evolutionarily conserved intraepithelial GABA signaling that, in concert with IL-13, plays an essential role in mucus overproduction. Our findings may offer new strategies to ameliorate mucus overproduction in patients with asthma by targeting PNEC secretion and GABA signaling.


Assuntos
Células Caliciformes/patologia , Pulmão/patologia , Células Neuroendócrinas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Asma/patologia , Brônquios/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Humanos , Hiperplasia , Interleucina-13/metabolismo , Macaca mulatta , Muco/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais
15.
Cancer Sci ; 110(2): 481-488, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30589983

RESUMO

Smad3, a major transcription factor in transforming growth factor-ß (TGF-ß) signaling, plays critical roles in both tumor-suppressive and pro-oncogenic functions. Upon TGF-ß stimulation, the C-terminal tail of Smad3 undergoes phosphorylation that is essential for canonical TGF-ß signaling. The Smad3 linker region contains serine/threonine phosphorylation sites and can be phosphorylated by intracellular kinases, such as the MAPK family, cyclin-dependent kinase (CDK) family and glycogen synthase kinase-3ß (GSK-3ß). Previous reports based on cell culture studies by us and others showed that mutation of Smad3 linker phosphorylation sites dramatically intensifies TGF-ß responses as well as growth-inhibitory function and epithelial-mesenchymal transition (EMT), suggesting that Smad3 linker phosphorylation suppresses TGF-ß transcriptional activities. However, recent discoveries of Smad3-interacting molecules that preferentially bind phosphorylated Smad3 linker serine/threonine residues have shown a multitude of signal transductions that either enhance or suppress TGF-ß responses associated with Smad3 turnover or cancer progression. This review aims at providing new insight into the perplexing mechanisms of TGF-ß signaling affected by Smad3 linker phosphorylation and further attempts to gain insight into elimination and protection of TGF-ß-mediated oncogenic and growth-suppressive signals, respectively.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/fisiologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Progressão da Doença , Humanos
16.
J Allergy Clin Immunol ; 142(5): 1469-1478.e2, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29330013

RESUMO

BACKGROUND: Genetic variants in the chromosomal region 17q21 are consistently associated with asthma. However, mechanistic studies have not yet linked any of the associated variants to a function that could influence asthma, and as a result, the identity of the asthma gene(s) remains elusive. OBJECTIVES: We sought to identify and characterize functional variants in the 17q21 locus. METHODS: We used the Exome Aggregation Consortium browser to identify coding (amino acid-changing) variants in the 17q21 locus. We obtained asthma association measures for these variants in both the Genetic Epidemiology Research in Adult Health and Aging (GERA) cohort (16,274 cases and 38,269 matched controls) and the EVE Consortium study (5,303 asthma cases and 12,560 individuals). Gene expression and protein localization were determined by quantitative RT-PCR and fluorescence immunostaining, respectively. Molecular and cellular studies were performed to determine the functional effects of coding variants. RESULTS: Two coding variants (rs2305480 and rs11078928) of the gasdermin B (GSDMB) gene in the 17q21 locus were associated with lower asthma risk in both GERA (odds ratio, 0.92; P = 1.01 × 10-6) and EVE (odds ratio, 0.85; joint PEVE = 1.31 × 10-13). In GERA, rs11078928 had a minor allele frequency (MAF) of 0.45 in unaffected (nonasthmatic) controls and 0.43 in asthma cases. For European Americans in EVE, the MAF of rs2305480 was 0.45 for controls and 0.39 for cases; for all EVE subjects, the MAF was 0.32 for controls and 0.27 for cases. GSDMB is highly expressed in differentiated airway epithelial cells, including the ciliated cells. We found that, when the GSDMB protein is cleaved by inflammatory caspase-1 to release its N-terminal fragment, potent pyroptotic cell death is induced. The splice variant rs11078928 deletes the entire exon 6, which encodes 13 amino acids in the critical N-terminus, and abolishes the pyroptotic activity of the GSDMB protein. CONCLUSIONS: Our study identified a functional asthma variant in the GSDMB gene of the 17q21 locus and implicates GSDMB-mediated epithelial cell pyroptosis in pathogenesis.


Assuntos
Asma/genética , Células Epiteliais/metabolismo , Proteínas de Neoplasias/genética , Piroptose/genética , Adulto , Brônquios/citologia , Células Cultivadas , Éxons , Feminino , Variação Genética , Humanos , Masculino , Risco
17.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L645-L652, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070589

RESUMO

During acute bronchoconstriction, the airway epithelium becomes mechanically compressed, as airway smooth muscle contracts and the airway narrows. This mechanical compression activates airway epithelium to promote asthmatic airway remodeling. However, whether compressed airway epithelium can feed back on the cause of bronchoconstriction has remained an open question. Here we examine the potential for epithelial compression to augment proliferation and contraction of airway smooth muscle, and thus potentiate further bronchoconstriction and epithelial compression. Well-differentiated primary human bronchial epithelial (HBE) cells maintained in air-liquid interface culture were mechanically compressed to mimic the effect of bronchoconstriction. Primary human airway smooth muscle (HASM) cells were incubated with conditioned media collected from mechanically compressed HBE cells to examine the effect of epithelial-derived mediators on HASM cell proliferation using an EdU assay and HASM cell contraction using traction microscopy. An endothelin receptor antagonist, PD-145065, was employed to probe the role of HBE cell-derived endothelin-1 on the proliferation and contraction of HASM cells. Conditioned media from compressed HBE cells increased HASM cell proliferation, independent of the endothelin-1 signaling pathway. However, conditioned media from compressed HBE cells significantly increased HASM cell basal contraction and histamine-induced contraction, both of which depended on the endothelin-1 signaling pathway. Our data demonstrate that mechanical compression of bronchial epithelial cells contributes to proliferation and basal contraction of airway smooth muscle cells and that augmented contraction depends on epithelial cell-derived endothelin-1. By means of both airway smooth muscle remodeling and contractility, our findings suggest a causal role of epithelial compression on asthma pathogenesis.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/patologia , Broncoconstrição/fisiologia , Proliferação de Células , Contração Muscular , Músculo Liso/fisiologia , Sistema Respiratório/patologia , Asma/metabolismo , Células Cultivadas , Endotelina-1/metabolismo , Humanos , Músculo Liso/citologia , Sistema Respiratório/metabolismo , Transdução de Sinais
18.
J Cell Sci ; 129(18): 3375-83, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27550520

RESUMO

Collective cellular migration within the epithelial layer impacts upon development, wound healing and cancer invasion, but remains poorly understood. Prevailing conceptual frameworks tend to focus on the isolated role of each particular underlying factor - taken one at a time or at most a few at a time - and thus might not be tailored to describe a cellular collective that embodies a wide palette of physical and molecular interactions that are both strong and complex. To bridge this gap, we shift the spotlight to the emerging concept of cell jamming, which points to only a small set of parameters that govern when a cellular collective might jam and rigidify like a solid, or instead unjam and flow like a fluid. As gateways to cellular migration, the unjamming transition (UJT) and the epithelial-to-mesenchymal transition (EMT) share certain superficial similarities, but their congruence - or lack thereof - remains unclear. In this Commentary, we discuss aspects of cell jamming, its established role in human epithelial cell layers derived from the airways of non-asthmatic and asthmatic donors, and its speculative but emerging roles in development and cancer cell invasion.


Assuntos
Asma/patologia , Movimento Celular , Desenvolvimento Embrionário , Neoplasias/patologia , Animais , Transição Epitelial-Mesenquimal , Epitélio/patologia , Humanos
20.
Nucleic Acids Res ; 44(2): 558-72, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26420833

RESUMO

Gene amplification is a hallmark of cancer with chromosomal instability although the underlying mechanism by which altered copy numbers are maintained is largely unclear. Cohesin, involved in sister chromatid cohesion, DNA repair, cell cycle progression and transcriptional regulation of key developmental genes, is frequently overexpressed in human cancer. Here we show that cohesin-dependent change in DNA replication controls the copy numbers of amplified genes in cancer cells with chromosomal instability. We found that the down-regulation of elevated cohesin leads to copy number-associated gene expression changes without disturbing chromosomal segregation. Highly amplified genes form typical long-range chromatin interactions, which are stabilized by enriched cohesin. The spatial proximities among cohesin binding sites within amplified genes are decreased by RAD21-knockdown, resulting in the rapid decline of amplified gene expression. After several passages, cohesin depletion inhibits DNA replication initiation by reducing the recruitment of pre-replication complexes such as minichromosome maintenance subunits 7 (MCM7), DNA polymerase α, and CDC45 at replication origins near the amplified regions, and as a result, decreases the DNA copy numbers of highly amplified genes. Collectively, our data demonstrate that cohesin-mediated chromatin organization and DNA replication are important for stabilizing gene amplification in cancer cells with chromosomal instability.


Assuntos
Instabilidade Cromossômica , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Fosfoproteínas/genética , Neoplasias Gástricas/genética , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromátides/química , Cromátides/metabolismo , Cromatina/química , Cromatina/metabolismo , Segregação de Cromossomos , Hibridização Genômica Comparativa , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA , Dosagem de Genes , Células HCT116 , Células Hep G2 , Humanos , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA