Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1324-1331, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230977

RESUMO

Oxide semiconductors (OS) are attractive materials for memory and logic device applications owing to their low off-current, high field effect mobility, and superior large-area uniformity. Recently, successful research has reported the high field-effect mobility (µFE) of crystalline OS channel transistors (above 50 cm2 V-1 s-1). However, the memory and logic device application presents challenges in mobility and stability trade-offs. Here, we propose a method for achieving high-mobility and high-stability by lowering the grain boundary effect. A DBADMIn precursor was synthesized to deposit highly c-axis-aligned C(222) crystalline 3 nm thick In2O3 films. In this study, the 250 °C deposited 3 nm thick In2O3 channel transistor exhibited high µFE of 41.12 cm2 V-1 s-1, Vth of -0.50 V, and SS of 150 mV decade-1 with superior stability of 0.16 V positive shift during PBTS at 100 °C, 3 MV cm-1 stress conditions for 3 h.

2.
Nanotechnology ; 35(40)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38981456

RESUMO

Low-k SiONC thin films with excellent thermal stabilities were deposited using plasma-assisted molecular layer deposition (PA-MLD) with a tetraisocyanatesilane (Si(NCO)4) precursor, N2plasma, and phloroglucinol (C6H3(OH)3). By adjusting the order of the N2plasma exposure steps within the PA-MLD process, we successfully developed a deposition technique that allows accurate control of thickness at the Ångström level via self-limiting reactions. The thicknesses of the thin films were measured through spectroscopic ellipsometry (SE). By tuning the N2plasma power, we facilitated the formation of -NH2sites for phloroglucinol adsorption, achieving a growth per cycle of 0.18 Å cycle-1with 300 W of N2plasma power. Consequently, the thickness of the films increased linearly with each additional cycle. Moreover, the organic linkers within the film formed stable bonds through surface reactions, resulting in a negligible decrease in thickness of approximately -11% even upon exposure to a high annealing temperature of 600 °C. This observation was confirmed by SE, distinguishing the as-prepared film from previously reported low-k films that fail to maintain their thickness under similar conditions. X-ray photoelectron spectroscopy (XPS) and current-voltage (I-V) and capacitance-voltage (C-V) measurement were conducted to evaluate the composition, insulating properties, and dielectric constant according to the deposition and annealing conditions. XPS results revealed that as the plasma power increased from 200 to 300 W, the C/Si ratio increased from 0.37 to 0.67, decreasing the dielectric constant from 3.46 to 3.12. Furthermore, there was no significant difference in the composition before and after annealing, and the hysteresis decreased from 0.58 to 0.19 V owing to defect healing, while maintaining the leakage current density, breakdown field, and dielectric constant. The low dielectric constant, accurate thickness control, and excellent thermal stability of this MLD SiONC thin film enable its application as an interlayer dielectric in back-end-of-line process.

3.
Nanotechnology ; 34(38)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37295407

RESUMO

Te thin films have recently received considerable attention owing to its superior electrical and thermoelectric properties. During the deposition process, if the temperature of the substrate is raised, high crystallinity and improved electrical properties can be expected. In this study, we used radio frequency sputtering for Te deposition to study the relationship between the deposition temperature, crystal size, and electrical performance. As the deposition temperature is increased from room temperature to 100 °C, we observed an increase in crystal size from the x-ray diffraction patterns and full-width half maximum calculations. With this grain size increment, the Hall mobility and Seebeck coefficient of the Te thin film increased significantly from 16 to 33 cm2V-1s-1and 50 to 138µV K-1, respectively. This study reveals the potential of a facile fabrication method for enhanced Te thin films using temperature control and highlights the importance of the Te crystal structure in determining the electrical/thermoelectrical properties. These findings are particularly significant for the development of semiconductor material systems for various applications, including thermoelectric devices, CMOS, FET, and solar devices.

4.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336319

RESUMO

A multiple-actuator fault isolation approach for overactuated electric vehicles (EVs) is designed with a minimal ℓ1-norm solution. As the numbers of driving motors and steering actuators increase beyond the number of controlled variables, an EV becomes an overactuated system, which exhibits actuator redundancy and enables the possibility of fault-tolerant control (FTC). On the other hand, an increase in the number of actuators also increases the possibility of simultaneously occurring multiple faults. To ensure EV reliability while driving, exact and fast fault isolation is required; however, the existing fault isolation methods demand high computational power or complicated procedures because the overactuated systems have many actuators, and the number of simultaneous fault occurrences is increased. The method proposed in this paper exploits the concept of sparsity. The underdetermined linear system is defined from the parity equation, and fault isolation is achieved by obtaining the sparsest nonzero component of the residuals from the minimal ℓ1-norm solution. Therefore, the locations of the faults can be obtained in a sequence, and only a consistently low computational load is required regardless of the isolated number of faults. The experimental results obtained with a scaled-down overactuated EV support the effectiveness of the proposed method, and a quantitative index of the sparsity condition for the target EV is discussed with a CarSim-connected MATLAB/Simulink simulation.

5.
Nanotechnology ; 28(10): 105401, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28145279

RESUMO

The thermal conductivity of superlattice films is generally anisotropic and should be studied separately in the in-plane and cross-plane directions of the films. However, previous works have mostly focused on the cross-plane thermal conductivity because the electrons and phonons in the cross-plane direction of superlattice films may result in much stronger interface scattering than that in the in-plane direction. Nevertheless, it is highly desirable to perform systematic studies on the effect of interface formation in semiconducting superlattice films on both in-plane and cross-plane thermal conductivities. In this study, we determine both the in-plane and cross-plane thermal conductivities of Al2O3 (AO)/ZnO superlattice films grown by atomic layer deposition (ALD) on SiO2/Si substrates in the temperature range of 50-300 K by the four-point-probe 3-ω method. Our experimental results indicate that the formation of an atomic AO layer (0.82 nm) significantly contributes to the decrease of the cross-plane thermal conductivity of the AO/ZnO superlattice films compared with that of AO/ZnO thin films. The cross-plane thermal conductivity (0.26-0.63 W m-1 K-1 of the AO/ZnO superlattice films (with an AO layer of ∼0.82 nm thickness) is approximately ∼150%-370% less than the in-plane thermal conductivity (0.96-1.19 W m-1 K-1) of the corresponding film, implying significant anisotropy. This indicates that the suppression of the cross-plane thermal conductivity is mainly attributed to the superlattice, rather than the nanograin columnar structure in the films. In addition, we theoretically analyzed strong anisotropic behavior of the in-plane and cross-plane thermal conductivities of the AO/ZnO superlattice films in terms of temperature dependence.

6.
Nanotechnology ; 27(50): 505209, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27861167

RESUMO

An ultra-high speed photonic sintering method consisting of flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiations was developed to fabricate a SrTiO3 (STO) thin film for application in electro-vibration touch panels. The STO thin film was sintered on PEN by FWL irradiation at room temperature under ambient conditions, which is a dramatically simple and ultrahigh speed fabrication process compared to the conventional high temperature (600 °C-900 °C) thermal sintering process. The effects of the FWL irradiation conditions (energy density, pulse numbers, and pulse duration) on the dielectric constant of the sintered STO thin films were evaluated. Furthermore, the effects of NIR and deep UV irradiation during the FWL sintering process were also investigated.

7.
Nano Lett ; 13(5): 1890-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23537351

RESUMO

Controlling the Dirac point of graphene is essential for complementary circuits. Here, we describe the use of 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole (o-MeO-DMBI) as a strong n-type dopant for chemical-vapor-deposition (CVD) grown graphene. The Dirac point of graphene can be tuned significantly by spin-coating o-MeO-DMBI solutions on the graphene sheets at different concentrations. The transport of graphene can be changed from p-type to ambipolar and finally n-type. The electron transfer between o-MeO-DMBI and graphene was additionally confirmed by Raman imaging and photoemission spectroscopy (PES) measurements. Finally, we fabricated a complementary inverter via inkjet printing patterning of o-MeO-DMBI solutions on graphene to demonstrate the potential of o-MeO-DMBI n-type doping on graphene for future applications in electrical devices.


Assuntos
Benzimidazóis/química , Grafite/química , Estrutura Molecular , Soluções , Volatilização
8.
ACS Appl Mater Interfaces ; 16(12): 14995-15003, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38487867

RESUMO

Amorphous oxide semiconductors have been widely studied for various applications, including thin-film transistors (TFTs) for display backplanes and semiconductor memories. However, the inherent instability, limited mobility, and complexity of multicomponent oxide semiconductors for achieving high aspect ratios and conformality of cation distribution remain challenging. Indium-zinc oxide (IZO), known for its high mobility, also faces obstacles in instability resulting from high carrier doping density and low ionization energy. To address these issues and attain a balance between mobility and stability, adopting a highly aligned structure such as a c-axis aligned crystalline IGZO could be advantageous. However, limited studies have reported enhanced electrical performance using crystalline IZO, likely attributed to the high thermal stability of the individual components (In2O3 and ZnO). Here, we first propose a c-axis aligned composite (CAAC) IZO with superior TFT properties, including a remarkable performance of field-effect mobility (µFE) of 55.8 cm2/(V s) and positive-bias-temperature-stress stability of +0.16 V (2 MV/cm, 60 °C, 1 h), as well as a low subthreshold swing of 0.18 V/decade and hysteresis as 0.01 V, which could be obtained through optimization of growth temperature and composition using thermal atomic layer deposition. These results surpass those of TFTs based on nanocrystalline/polycrystalline/amorphous-IZO. We conducted a thorough investigation of CAAC-IZO and revealed that the growth temperature and cation distribution profoundly influence the crystal structure and device properties. Finally, we observed excellent compositional conformality and 97% step coverage of IZO on a high-aspect-ratio (HAR) structure with an aspect ratio reaching 40:1, which is highly promising for future applications. Our results include a detailed investigation of the influence of the crystal structure of IZO on the film and TFT performance and suggest an approach for future applications.

9.
ACS Appl Mater Interfaces ; 15(30): 36550-36563, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489641

RESUMO

Highly stable IGZO thin-film transistors derived from atomic layer deposition are crucial for the semiconductor industry. However, unavoidable defect generation during high-temperature annealing results in abnormal positive bias temperature stress (PBTS). Herein, we propose a defect engineering method by controlling the gate insulator (GI) deposition temperature. Applying a GI deposition temperature of 400 °C to the In0.52Ga0.18Zn0.30O active layer effectively suppresses defects even after 600 °C annealing, preserving the amorphous phase of IGZO. The device exhibits a threshold voltage (VTH) of 0.05 V, a field-effect mobility of 27.6 cm2/Vs, a subthreshold swing of 61 mV/decade, and a hysteresis voltage of 0.01 V, demonstrating highly reliable PBTS and negative bias temperature stress. A power-law fit of the PBTS stability under 2 MV/cm of gate field stress and 120 °C of temperature stress predicts a VTH shift of -0.01 V after 10 years. Moreover, the proposed method ensures reliable uniformity over a large 4 in. area.

10.
Small Methods ; 7(10): e2300549, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37381681

RESUMO

As the scale-down and power-saving of silicon-based channel materials approach the limit, oxide semiconductors are being actively researched for applications in 3D back-end-of-line integration. For these applications, it is necessary to develop stable oxide semiconductors with electrical properties similar to those of Si. Herein, a single-crystal-like indium-gallium-zinc-oxide (IGZO) layer (referred to as a pseudo-single-crystal) is synthesized using plasma-enhanced atomic layer deposition and fabricated stable IGZO transistors with an ultra-high mobility of over 100 cm2  Vs-1 . To acquire high-quality atomic layer deposition-processed IGZO layers, the plasma power of the reactant is controlled as an effective processing parameter by evaluating and understanding the effect of the chemical reaction of the precursors on the behavior of the residual hydrogen, carbon, and oxygen in the as-deposited films. Based on these insights, this study found that there is a critical relationship between the optimal plasma reaction energy, superior electrical performance, and device stability.

11.
ACS Appl Mater Interfaces ; 15(26): 31652-31663, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350067

RESUMO

Achieving high mobility and reliability in atomic layer deposition (ALD)-based IGZO thin-film transistors (TFTs) with an amorphous phase is vital for practical applications in relevant fields. Here, we suggest a method to effectively increase stability while maintaining high mobility by employing the selective application of nitrous oxide plasma reactant during plasma-enhanced ALD (PEALD) at 200 °C process temperature. The nitrogen-doping mechanism is highly dependent on the intrinsic carbon impurities or nature of each cation, as demonstrated by a combination of theoretical and experimental research. The Ga2O3 subgap states are especially dependent on plasma reactants. Based on these insights, we can obtain high-performance indium-rich PEALD-IGZO TFTs (threshold voltage: -0.47 V; field-effect mobility: 106.5 cm2/(V s); subthreshold swing: 113.5 mV/decade; hysteresis: 0.05 V). In addition, the device shows minimal threshold voltage shifts of +0.45 and -0.10 V under harsh positive/negative bias temperature stress environments (field stress: ±2 MV/cm; temperature stress: 95 °C) after 10000 s.

12.
J Nanosci Nanotechnol ; 12(7): 5598-603, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966617

RESUMO

Al-doped ZnO (AZO) thin films with various Al concentrations were synthesized on Si(001) substrates with native oxide layers by atomic layer deposition process. The effects of the Al concentration on the microstructural characteristics of the AZO thin films grown at 250 degrees C and the correlation between their microstructural characteristics and electrical properties of the AZO thin films were investigated by AFM, XRD, HRTEM and Hall measurements. The XRD and HRTEM results revealed that the crystallinity and electrical properties of the undoped ZnO thin films were enhanced by 2.48 at% Al doping. However, 12.62 at% Al doping induced the deterioration of their crystallinity and electrical properties due to the formation of nano-sized metallic Al clusters and randomly oriented ZnO-based nano-crystals. To enhance the electrical properties of the AZO thin films while maintaining their crystallinity and electrical properties, a moderate Al concentration has to be chosen under the solubility limit of Al in ZnO.

13.
Sci Rep ; 12(1): 12167, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842484

RESUMO

The optimized ALD infilling process for depositing Al2O3 in the vertical direction of PbS QDs enhances the photoresponsivity, relaxation rate and the air stability of PbS QDs hybrid IGZO NIR phototransistors. Infilled Al2O3, which is gradually deposited from the top of PbS QDs to the PbS/IGZO interface (1) passivates the trap sites up to the interface of PbS/IGZO without disturbing charge transfer and (2) prevents QDs deterioration caused by outside air. Therefore, an Al2O3 infilled PbS QD/IGZO hybrid phototransistor (AI-PTs) exhibited enhanced photoresponsivity from 96.4 A/W to 1.65 × 102 A/W and a relaxation time decrease from 0.52 to 0.03 s under NIR light (880 nm) compared to hybrid phototransistors without Al2O3 (RF-PTs). In addition, AI-PTs also showed improved shelf stability over 4 months compared to RF-PTs. Finally, all devices we manufactured have the potential to be manufactured in an array, and this ALD technique is a means of fabricating robust QDs/metal oxide hybrids for optoelectronic devices.

14.
Dalton Trans ; 51(5): 1829-1837, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018399

RESUMO

Organic/inorganic hybrid tincone films were deposited by molecular layer deposition (MLD) using N,N'-tert-butyl-1,1-dimethylethylenediamine stannylene(II) as a precursor and hydroquinone (HQ) as an organic reactant. From previous studies it is known that SnO can be fabricated through a reaction with H2O, which has low oxidizing power. Similarly, when combined with HQ having a bi-functional hydroxyl group, SnO-based 2D hybrid tincones can be produced. In most aromatic ring-based metalcones described in previous studies, graphitization by pyrolysis occurred during post-annealing. In this study of tincones fabricated with a divalent precursor after a vacuum post-annealing process, the structural rearrangement of the SnO and the benzene ring bonds proceeded to form a SnO-based hybrid 2D structure. The rearrangement of the resulting structure occurred through π-π stacking (without pyrolysis) of the benzene ring. To understand the mechanism of fabrication of 2D hybrid tincones by π-π stacking of the benzene ring and the increase of the crystallinity of SnO after the annealing process, the structural rearrangement was observed using X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), grazing-incidence wide-angle X-ray scattering (GIWAXS), and Raman spectroscopy. Thereafter, the design of the crystal structure was investigated.

15.
J Nanosci Nanotechnol ; 11(2): 1738-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456280

RESUMO

Planar sensor of SrTi(1-x)Fe(x)O3-delta, x = 0.4 and 0.6, with perovskite structure was fabricated on alumina substrate using thick film technology. Electrical resistance was measured as a function of thermal treatment conditions, atmosphere, time and temperature. Sensing property was also measured as a function of temperature and the gases of O2, CH4, CO, CO2, NO and NO2. The resistance of SrTi(1-x)Fe(x)O3-delta is lower than those of SrTiO3 or SrFeO3. TCR (temperature coefficient of resistance) of zero over 550 degrees C was measured for the composition of SrTi(1-x)Fe(x)O3-delta after thermal treatment at 1100 degrees C in air atmosphere only. The perovskite SrTi(1-x)Fe(x)O3-delta didn't show any response to CH4, CO, CO2, NO and NO2, but an excellent response and recovery characteristics with oxygen concentration.

16.
J Nanosci Nanotechnol ; 11(1): 671-4, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446521

RESUMO

Ru-TiN thin films were prepared from bis(ethylcyclopentadienyl)ruthenium and tetrakis(dimethylamino)titanium using plasma-enhanced atomic layer deposition (PEALD). The Ru and TiN were deposited sequentially to intermix TiN with Ru. The composition of Ru-TiN films was controlled precisely by changing the number of deposition cycles allocated to Ru, while fixing the number of deposition cycles allocated to TiN. Although both Ru and TiN thin films have a polycrystalline structure, the microstructure of the Ru-TiN films changed from a TiN-like polycrystalline structure to a nanocrystalline on increasing the Ru intermixing ratio. Moreover, the electrical resistivity of the Ru0.67-TiN0.33 thin films is sufficiently low at 190 microomega x cm and was maintained even after O2 annealing at 750 degrees C. Therefore, Ru-TiN thin films can be utilized as a oxygen diffusion barrier material for future dynamic (DRAM) and ferroelectric (FeRAM) random access memory capacitors.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Oxigênio/química , Rutênio/química , Titânio/química , Difusão , Difração de Raios X
17.
ACS Appl Mater Interfaces ; 13(50): 60144-60153, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878240

RESUMO

In semiconductor production, the technology node of a device is becoming extremely small below 5 nm. Area selective deposition (ASD) is a promising technique for creating improved overlay or self-alignment, remedying a conventional top-down method. However, the conventional materials and process (self-assembled monolayer, polymer and carbon film fabricated by chemical vapor deposition, and spin coating) for ASD are not suitable for highly conformal deposition. Thus, we investigated a new strategy to deposit conformal films in ASD by molecular layer deposition (MLD). The MLD processes were conducted for an indicone film deposited by INCA-1 (bis(trimethysily)amidodiethyl indium) and hydroquinone (HQ), as well as an alucone film deposited by TMA (trimethylaluminum) and HQ. After thermal heat treatment of the MLD films, variations in thickness, refractive index, and constituent elements of the annealed MLD films were investigated. The indicone film was used as an inhibiting layer for ASD and was etchable with a dry-etching process. The reactive ion etching process on annealed indicone film was optimized according to plasma power, gas concentration, and working pressure. Ruthenium (Ru) ALD was then performed on the annealed MLD films to investigate nucleation delaying cycles and inhibiting properties. A patterned substrate with an MLD/Si line was created via the RIE process, which was allowed to observe the selectivity of the annealed MLD films. In addition, a patterned substrate of SiO2/annealed indicone/Mo was used to investigate the Ru-selective ALD at the nanoscale. The Ru thin film was selectively deposited on the Mo side-wall surface of a 3D trench structure. The growth of the Ru film was inhibited selectively on an annealed indicone surface of approximately 5 nm.

18.
ACS Appl Mater Interfaces ; 13(15): 17827-17834, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33844508

RESUMO

Indium-gallium-zinc oxide- and zinc oxynitride-based heterojunction phototransistors were successfully demonstrated to control the persistent photoconduction (PPC) effect and be also responded sensitively at the range from visible to near-infrared. ZnON plays a key role in extending the spectral response at various frequencies of operation. The devices show significantly different photoresponse and photorecovery characteristics depending on the number of stacked layers of IGZO and ZnON. After negative bias and illumination stress was applied to the devices for 1 h, tandem-structure-based phototransistors recovered remarkably better than single-component IGZO devices. We suggest that the improvements to photoresponse and photorecovery result from the presence of potential wells between two IGZO layers and the energy band alignment of the tandem structure.

19.
Dalton Trans ; 50(28): 9958-9967, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34226906

RESUMO

Area selective atomic layer deposition (AS-ALD) is a promising future technology for the realization of a 5 nm scale Si complementary field effect transistor (FET) and its application in industry. AS-ALD is one of the "bottom-up" technologies, which is a key process that can reduce the cost of fabrication and decrease positional error as an alternative to the conventional "top down" technology. We researched an inhibitor for AS-ALD using molecular layer deposited (MLD) films annealed by electron beam irradiation (EBI). We studied the effect of EBI on an indicone film that was fabricated by using bis(trimethylsilyl)amidodiethyl indium (INCA-1), hydroquinone (HQ), an alucone film fabricated by using trimethylaluminum (TMA) and 4-mercaptophenol (4MP). The EBI effect on MLD films was evaluated by investigating the changes in thickness, composition and structure. In order to observe the selectivity of the annealed indicone film, atomic layer deposition of ZnO was performed on the annealed indicone/silicon line pattern, and it was found that the surface of annealed indicone can inhibit ALD of ZnO for 20 cycles as compared to a Si surface.

20.
Dalton Trans ; 50(43): 15841-15848, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34708841

RESUMO

Organic light emitting diodes (OLEDs) and amorphous oxide semiconductors (AOSs), which are very important technologies in high performance flexible displays, have issues related to degradation due to diffusion of water and hydrogen, respectively. To solve these issues, gas diffusion barrier properties were evaluated with aluminum oxide deposited by atomic layer deposition (ALD) and alucone deposited by molecular layer deposition (MLD) using trimethylaluminum (TMA) as a metal precursor and H2O and hydroquinone (HQ) as co-reactants, respectively. The water vapor transmission rate (WVTR) and hydrogen gas permeability (HGP) were measured for the fabricated films via electrical calcium tests and vacuum time-lag, respectively. To enhance the diffusion barrier properties, Al2O3/alucone hybrid multi-layer structures were successfully deposited through an in situ ALD/MLD process. The 4.5 dyads of the Al2O3/alucone structure showed improved barrier properties compared to the single Al2O3 film with a WVTR of 8.24 × 10-5 g m-2 day-1 and a HGP of 9.93 × 10-5 barrer, and factors related to gas diffusion in multi-layer structures were discussed. The stability to external stress was also evaluated based on the WVTR change rate after the bending test, and we confirmed that the stability of the multi-layer structures was improved due to the flexibility of inserted alucone layers. All the developed structures had a high optical transmittance of >80% in the 300-800 nm wavelength region based on UV-vis measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA