Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38869487

RESUMO

A Gram-stain-positive, aerobic bacterium, designated as YPD9-1T, was isolated from the gut contents of a spotty belly greenling, Hexagrammos agrammus, collected near Dokdo island, South Korea. The rod-shaped cells were oxidase-positive, and catalase-negative. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0, iso-C16 : 0 and iso-C17: 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 47.6 mol% and the predominant respiratory quinone was menaquinone MK-7. The 16S rRNA gene sequence of YPD9-1T showed low sequence similarities to species of the genus Paenibacillus, Paenibacillus pocheonensis Gsoil 1138T (97.21 % of sequence similarity), Paenibacillus aestuarii CJ25T (97.12 %) and Paenibacillus allorhizoplanae JJ-42T (96.89 %). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that YPD9-1T formed a distinct branch among other species of the genus Paenibacillus. The digital DNA-DNA hybridisation, average nucleotide identity, and average amino acid identity values between YPD9-1T and the related species were in the ranges of 15.3-16.2 %, 74.1-78.4 %, and 71.1-71.9 %, respectively, which are below the species cutoff values. On the basis of the results of the polyphasic analysis, we conclude that strain YPD9-1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus hexagrammi sp. nov. is proposed. The type strain of Paenibacillus hexagrammi is YPD9-1T (=KCTC 43424T =LMG 32988T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Paenibacillus , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , República da Coreia , Ácidos Graxos/análise , Ácidos Graxos/química , Paenibacillus/isolamento & purificação , Paenibacillus/classificação , Paenibacillus/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Animais , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Fosfolipídeos/química
2.
Fish Shellfish Immunol ; 142: 109077, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37726081

RESUMO

We explored the biotechnological applicability of a previously established olive flounder (Paralichthys olivaceus) embryonic cell line (FGBC8). FGBC8 was transfected with pEGFP-c1 and pluripotency-related genes, then infected with viral hemorrhagic septicemia virus (VHSV), and the expression of immune-related genes was observed through quantitative real-time polymerase chain reaction. Transfected cells showed strong green fluorescence 48 h after transfection, and pluripotency-related genes were successfully transfected. In addition, FGBC8 cells were highly susceptible to VHSV and the expression of immune-related genes was induced during infection. Our results demonstrate that FGBC8 cells are valuable research tools for assessing host-pathogen interactions and biotechnological applications.


Assuntos
Doenças dos Peixes , Linguado , Septicemia Hemorrágica Viral , Novirhabdovirus , Animais , Linguado/genética , Análise Citogenética , Linhagem Celular , Novirhabdovirus/genética
3.
Mol Microbiol ; 108(6): 661-682, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29569300

RESUMO

Mycobacterium smegmatis mc2 155 has three genes (MSMEG_6383, furA1; MSMEG_3460, furA2; MSMEG_6253, furA3) encoding FurA (ferric-uptake regulator A) paralogs. Three FurA paralogs in M. smegmatis are functionally redundant and negatively regulate expression of a subset of genes involved in peroxide detoxification such as ahpC, katG1 and katG2, as well as their own genes. The FurA paralogs sense H2 O2 via metal-catalyzed His oxidation (MCHO) in the same way as PerR. The propensity of FurA2 and FurA3 for MCHO is greater than that of FurA1. The three furA genes are transcribed into leaderless mRNAs lacking the Shine-Dalgarno (SD) sequence. FurA1 and FurA3 have the quaternary structure of homodimers like most Fur homologs, whereas FurA2 occurs as a monomer. The monomeric structure of FurA2 is determined by the C-terminal region of its dimerization domain. FurA2 monomers appear to cooperatively bind to the FurA-binding site with an inverted repeat configuration and have a broader binding specificity for the target DNA than dimeric FurA1 and FurA3. Comparative transcriptomic analysis revealed that the FurA paralogs do not regulate genes related to iron homeostasis in M. smegmatis, and that expression of SigF-regulated genes is significantly decreased in a furA triple mutant relative to the wild-type strain of M. smegmatis.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Peróxidos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/genética , Estresse Oxidativo
4.
J Headache Pain ; 19(1): 78, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30178397

RESUMO

BACKGROUND: Cluster headaches (CH) are recurrent severe headaches, which impose a major burden on the life of patients. We investigated the impact of CH on employment status and job burden. METHODS: The study was a sub-study of the Korean Cluster Headache Registry. Patients with CH were enrolled from September 2016 to February 2018 from 15 headache clinics in Korea. We also enrolled a headache control group with age-sex matched patients with migraine or tension-type headache. Moreover, a control group including individuals without headache complaints was recruited. All participants responded to a questionnaire that included questions on employment status, type of occupation, working time, sick leave, reductions in productivity, and satisfaction with current occupation. The questionnaire was administered to participants who were currently employed or had previous occupational experience. RESULTS: We recruited 143 patients with CH, 38 patients with other types of headache (migraine or tension-type headache), and 52 headache-free controls. The proportion of employees was lower in the CH group compared with the headache and headache-free control groups (CH: 67.6% vs. headache controls: 84.2% vs. headache-free controls: 96.2%; p = 0.001). The CH group more frequently experienced difficulties at work and required sick leave than the other groups (CH: 84.8% vs. headache controls: 63.9% vs. headache-free controls: 36.5%; p <  0.001; CH: 39.4% vs. headache controls: 13.9% vs. headache-free controls: 3.4%; p <  0.001). Among the patients with CH, sick leave was associated with younger age at CH onset (25.8 years vs. 30.6 years, p = 0.014), severity of pain rated on a visual analogue scale (9.3 vs. 8.8, p = 0.008), and diurnal periodicity during the daytime (p = 0.003). There were no significant differences with respect to the sick leave based on sex, age, CH subtypes, and CH recurrence. CONCLUSIONS: CH might be associated with employment status. Most patients with CH experienced substantial burdens at work.


Assuntos
Cefaleia Histamínica/epidemiologia , Cefaleia Histamínica/psicologia , Emprego/psicologia , Carga de Trabalho/psicologia , Adulto , Estudos Transversais , Emprego/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos , Estudos Prospectivos , Sistema de Registros , República da Coreia/epidemiologia , Inquéritos e Questionários , Adulto Jovem
5.
Curr Genet ; 62(1): 115-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26454852

RESUMO

Members of the genus Burkholderia occupy remarkably diverse niches, with genome sizes ranging from ~3.75 to 11.29 Mbp. The genome of Burkholderia glumae ranges in size from ~5.81 to 7.89 Mbp. Unlike other plant pathogenic bacteria, B. glumae can infect a wide range of monocot and dicot plants. Comparative genome analysis of B. glumae strains can provide insight into genome variation as well as differential features of whole metabolism or pathways between multiple strains of B. glumae infecting the same host. Comparative analysis of complete genomes among B. glumae BGR1, B. glumae LMG 2196, and B. glumae PG1 revealed the largest departmentalization of genes onto separate replicons in B. glumae BGR1 and considerable downsizing of the genome in B. glumae LMG 2196. In addition, the presence of large-scale evolutionary events such as rearrangement and inversion and the development of highly specialized systems were found to be related to virulence-associated features in the three B. glumae strains. This connection may explain why this bacterium broadens its host range and reinforces its interaction with hosts.


Assuntos
Evolução Biológica , Burkholderia/genética , Genoma Bacteriano , Genômica , Burkholderia/classificação , Burkholderia/metabolismo , Rearranjo Gênico , Estudo de Associação Genômica Ampla , Genômica/métodos , Redes e Vias Metabólicas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virulência/genética
6.
Int J Mol Sci ; 17(6)2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27322257

RESUMO

Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis.


Assuntos
Cirrose Hepática/genética , MicroRNAs/genética , Animais , Tetracloreto de Carbono/toxicidade , Redes Reguladoras de Genes , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Transdução de Sinais
7.
BMC Genomics ; 16: 349, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943361

RESUMO

BACKGROUND: In addition to human and animal diseases, bacteria of the genus Burkholderia can cause plant diseases. The representative species of rice-pathogenic Burkholderia are Burkholderia glumae, B. gladioli, and B. plantarii, which primarily cause grain rot, sheath rot, and seedling blight, respectively, resulting in severe reductions in rice production. Though Burkholderia rice pathogens cause problems in rice-growing countries, comprehensive studies of these rice-pathogenic species aiming to control Burkholderia-mediated diseases are only in the early stages. RESULTS: We first sequenced the complete genome of B. plantarii ATCC 43733T. Second, we conducted comparative analysis of the newly sequenced B. plantarii ATCC 43733T genome with eleven complete or draft genomes of B. glumae and B. gladioli strains. Furthermore, we compared the genome of three rice Burkholderia pathogens with those of other Burkholderia species such as those found in environmental habitats and those known as animal/human pathogens. These B. glumae, B. gladioli, and B. plantarii strains have unique genes involved in toxoflavin or tropolone toxin production and the clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bacterial immune system. Although the genome of B. plantarii ATCC 43733T has many common features with those of B. glumae and B. gladioli, this B. plantarii strain has several unique features, including quorum sensing and CRISPR/CRISPR-associated protein (Cas) systems. CONCLUSIONS: The complete genome sequence of B. plantarii ATCC 43733T and publicly available genomes of B. glumae BGR1 and B. gladioli BSR3 enabled comprehensive comparative genome analyses among three rice-pathogenic Burkholderia species responsible for tissue rotting and seedling blight. Our results suggest that B. glumae has evolved rapidly, or has undergone rapid genome rearrangements or deletions, in response to the hosts. It also, clarifies the unique features of rice pathogenic Burkholderia species relative to other animal and human Burkholderia species.


Assuntos
Adaptação Fisiológica/genética , Burkholderia/genética , Burkholderia/fisiologia , Meio Ambiente , Genômica , Especificidade de Hospedeiro/genética , Oryza/microbiologia , Animais , Sistemas de Secreção Bacterianos/genética , Toxinas Bacterianas/biossíntese , Burkholderia/citologia , Sistemas CRISPR-Cas , Genes Bacterianos/genética , Genoma Bacteriano/genética , Humanos , Dados de Sequência Molecular , Percepção de Quorum/genética
8.
Neurobiol Dis ; 64: 1-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24355314

RESUMO

Familial hemiplegic migraine type 1 (FHM-1) is a monogenic subtype of migraine with aura caused by missense mutations in the CACNA1A gene, which encodes the pore-forming α1 subunit of voltage-gated neuronal CaV2.1 (P/Q-type) calcium channels. Transgenic knock-in mice expressing the CACNA1A R192Q mutation that causes FHM-1 in patients show a greater susceptibility to cortical spreading depression, the likely underlying mechanism of typical human migraine aura. The aim of this study was to compare neuronal activation within the trigeminal pain pathways in response to nociceptive trigeminovascular stimulation in wild-type and R192Q knock-in mice. After sham surgery or electrical stimulation of the superior sagittal sinus for 2h, or stimulation preceded by treatment with naratriptan, mice underwent intracardiac perfusion, and the brain, including the brainstem, was removed. Fos expression was measured in the trigeminocervical complex (TCC) and the lateral (ventroposteromedial, ventrolateral), medial (parafascicular, centromedian) and posterior thalamic nuclei. In the TCC of wild-type animals, the number of Fos-positive cells increased significantly following dural stimulation compared to the sham control group (P<0.001) and decreased after naratriptan treatment (P<0.05). In R192Q knock-in mice, there was no significant difference between the stimulated and sham (P=0.10) or naratriptan pre-treated groups (P=0.15). The number of Fos-positive cells in the R192Q stimulated group was significantly lower compared to the wild-type stimulated mice (P<0.05). In the thalamus, R192Q mice tended to be more sensitive to stimulation compared to the sham control in the medial and posterior nuclei, and between the two strains of stimulated animals there was a significant difference in the centromedian (P<0.005), and posterior nuclei (P<0.05). The present study suggests that the FHM-1 mutation affects more rostral brain structures in this experimental paradigm, which offers a novel perspective on possible differential effects of mutations causing migraine in terms of phenotype-genotype correlations.


Assuntos
Canais de Cálcio/metabolismo , Neurônios/metabolismo , Nociceptividade/fisiologia , Seio Sagital Superior/metabolismo , Núcleos Talâmicos/metabolismo , Núcleos do Trigêmeo/metabolismo , Animais , Canais de Cálcio/genética , Ataxia Cerebelar/genética , Estimulação Elétrica , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos de Enxaqueca/genética , Mutação de Sentido Incorreto , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Seio Sagital Superior/efeitos dos fármacos , Núcleos Talâmicos/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleos do Trigêmeo/efeitos dos fármacos , Triptaminas/farmacologia
9.
Plant Pathol J ; 40(1): 30-39, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326956

RESUMO

The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of Au. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with Au. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance. Our findings revealed a predominance of downregulated genes in the treated seedlings, suggesting a strategic reallocation of resources to enhance stress defense. Further exploration of enriched Kyoto Encyclopedia of Genes and Genomes pathways and protein-protein interaction networks revealed significant alterations in functional systems known to fortify drought tolerance, including the terpenoid backbone biosynthesis, calcium signaling pathway, pyruvate metabolism, brassinosteroid biosynthesis, and, crucially, flavonoid biosynthesis, renowned for enhancing plant drought resistance. These findings deepen our comprehension of how AK10 biostimulation enhances the resilience of A. koreana to drought stress, marking a substantial advancement in the effort to conserve this endangered tree species through environmentally sustainable treatment.

10.
Front Plant Sci ; 15: 1416253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845849

RESUMO

This study presents a comprehensive genomic analysis of Burkholderia plantarii, a rice pathogen that causes blight and grain rot in seedlings. The entire genome of B. plantarii KACC 18964 was sequenced, followed by a comparative genomic analysis with other available genomes to gain insights into its virulence, fitness, and interactions with rice. Multiple secondary metabolite gene clusters were identified. Among these, 12 demonstrated varying similarity levels to known clusters linked to bioactive compounds, whereas eight exhibited no similarity, indicating B. plantarii as a source of potentially novel secondary metabolites. Notably, the genes responsible for tropolone and quorum sensing were conserved across the examined genomes. Additionally, B. plantarii was observed to possess three complete CRISPR systems and a range of secretion systems, exhibiting minor variations among the analyzed genomes. Genomic islands were analyzed across the four genomes, and a detailed study of the B. plantarii KACC 18964 genome revealed 59 unique islands. These islands were thoroughly investigated for their gene contents and potential roles in virulence. Particular attention has been devoted to the Type III secretion system (T3SS), a crucial virulence factor. An in silico analysis of potential T3SS effectors identified a conserved gene, aroA. Further mutational studies, in planta and in vitro analyses validated the association between aroA and virulence in rice. Overall, this study enriches our understanding of the genomic basis of B. plantarii pathogenicity and emphasizes the potential role of aroA in virulence. This understanding may guide the development of effective disease management strategies.

11.
Viruses ; 16(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932143

RESUMO

The social restriction measures implemented due to the COVID-19 pandemic have impacted the pattern of occurrences of respiratory viruses. According to surveillance results in the Gwangju region of South Korea, respiratory syncytial virus (RSV) did not occur during the 2020/2021 season. However, there was a delayed resurgence in the 2021/2022 season, peaking until January 2022. To analyze this, a total of 474 RSV positive samples were investigated before and after the COVID-19 pandemic. Among them, 73 samples were selected for whole-genome sequencing. The incidence rate of RSV in the 2021/2022 season after COVID-19 was found to be approximately three-fold higher compared to before the pandemic, with a significant increase observed in the age group from under 2 years old to under 5 years old. Phylogenetic analysis revealed that, for RSV-A, whereas four lineages were observed before COVID-19, only the A.D.3.1 lineage was observed during the 2021/2022 season post-pandemic. Additionally, during the 2022/2023 season, the A.D.1, A.D.3, and A.D.3.1 lineages co-circulated. For RSV-B, while the B.D.4.1.1 lineage existed before COVID-19, both the B.D.4.1.1 and B.D.E.1 lineages circulated after the pandemic. Although atypical RSV occurrences were not due to new lineages, there was an increase in the frequency of mutations in the F protein of RSV after COVID-19. These findings highlight the need to continue monitoring changes in RSV occurrence patterns in the aftermath of the COVID-19 pandemic to develop and manage strategies in response.


Assuntos
COVID-19 , Filogenia , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , SARS-CoV-2 , Humanos , República da Coreia/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Pré-Escolar , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Lactente , Criança , Feminino , Masculino , Incidência , Sequenciamento Completo do Genoma , Adulto , Estações do Ano , Pandemias , Pessoa de Meia-Idade , Idoso , Recém-Nascido , Adolescente
12.
Microb Genom ; 9(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796250

RESUMO

Members of the genus Chryseobacterium have attracted great interest as beneficial bacteria that can promote plant growth and biocontrol. Given the recent risks of climate change, it is important to develop tolerance strategies for efficient applications of plant-beneficial bacteria in saline environments. However, the genetic determinants of plant-growth-promoting and halotolerance effects in Chryseobacterium have not yet been investigated at the genomic level. Here, a comparative genomic analysis was conducted with seven Chryseobacterium species. Phylogenetic and phylogenomic analyses revealed niche-specific evolutionary distances between soil and freshwater Chryseobacterium species, consistent with differences in genomic statistics, indicating that the freshwater bacteria have smaller genome sizes and fewer genes than the soil bacteria. Phosphorus- and zinc-cycling genes (required for nutrient acquisition in plants) were universally present in all species, whereas nitrification and sulphite reduction genes (required for nitrogen- and sulphur-cycling, respectively) were distributed only in soil bacteria. A pan-genome containing 6842 gene clusters was constructed, which reflected the general features of the core, accessory and unique genomes. Halotolerant species with an accessory genome shared a Kdp potassium transporter and biosynthetic pathways for branched-chain amino acids and the carotenoid lycopene, which are associated with countermeasures against salt stress. Protein-protein interaction network analysis was used to define the genetic determinants of Chryseobacterium salivictor NBC122 that reduce salt damage in bacteria and plants. Sixteen hub genes comprised the aromatic compound degradation and Por secretion systems, which are required to cope with complex stresses associated with saline environments. Horizontal gene transfer and CRISPR-Cas analyses indicated that C. salivictor NBC122 underwent more evolutionary events when interacting with different environments. These findings provide deep insights into genomic adaptation to dynamic interactions between plant-growth-promoting Chryseobacterium and salt stress.


Assuntos
Chryseobacterium , Chryseobacterium/genética , Filogenia , Hibridização Genômica Comparativa , Genômica , Solo
13.
Plants (Basel) ; 12(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896116

RESUMO

The Korean fir tree Abies koreana, an endangered species in Korea, faces threats primarily from climate change-induced stress and drought. This study proposed a sustainable method to enhance A. koreana drought tolerance using a black yeast-like fungus identified as Aureobasidium pullulans (AK10). The 16S/ITS metabarcoding analysis assessed the impact of drought and AK10 treatment on the seedlings' rhizosphere microbiome. Results revealed a profound drought influence on the microbiome, particularly affecting fungal mycobiota. Drought-stressed seedlings exhibited elevated Agaricaceae levels, opportunistic fungi generally associated with decomposition. AK10 treatment significantly mitigated this proliferation and increased the relative abundance of beneficial fungi like Cystofilobasidium and Mortierella, known biocontrol agents and phosphate solubilizers. A notable reduction in the phytopathogenic Fusarium levels was observed with AK10, alongside an increase in beneficial bacteria, including Azospirillum and Nitrospirillum. Furthermore, the conducted correlation analysis shed light on microbial interrelationships within the rhizosphere, elucidating potential co-associations and antagonisms. Taken together, the isolated A. pullulans AK10 identified in this study serves as a potential biostimulant, enhancing the drought tolerance in A. koreana through beneficial alterations in the rhizosphere microbiome. This approach presents a promising strategy for the conservation of this endangered species.

14.
Genes Genomics ; 45(8): 1013-1024, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37266765

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoma that arises from malignant transformation of B lymphocytes. Outcome of patients with DLBCL has been significantly improved by rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy, which is regarded "gold standard" of DLBCL therapy. It is unfortunate that febrile neutropenia, a decrease of the neutrophil count in the blood accompanying fever, is one of the most common complications that DLBCL patients receiving R-CHOP regimen experience. Given the critical role of neutrophils against bacterial and fungal infections, neutropenia could be deadly. While the association between R-CHOP therapy and neutropenia has been well-established, the negative effect of DLBCL cells on the survival of neutrophils has not been clearly understood. Our previous study have shown that conditioned medium (CM) derived from Ly1 DLBCL cells induces apoptosis in murine neutrophils ex vivo. Additionally, Ly1 CM and doxorubicin synergize to further enhance apoptotic rate in neutrophils, possibly contributing to neutropenia in DLBCL patients. OBJECTIVE: We investigated the mechanism and genes that regulate neutrophil apoptosis induced by secretome of DLBCL cells, which would give insight into the potential role of DLBCL in neutropenia. METHOD: Murine neutrophils were isolated from bone marrow in C57BL6/J mice using flow cytometry. QuantSeq 3' mRNA-sequencing was conducted on neutrophils following exposure to CM derived from Ly1 DLBCL cells or murine bone marrow cells (control). Quantseq 3'mRNA sequencing data were aligned to identify differentially expressed mRNAs. Next, the expression of genes related to neutrophil apoptosis and proliferation were analyzed and Gene classification and ontology were analyzed. RESULT: We identified 1196 (198 upregulated and 998 downregulated) differentially expressed genes (DEGs) in Ly1 DLBCL co-culture group compared to the control group. The functional enrichment analyses of DEGs in co-culture group revealed significant enriched in apoptosis process, and immune system process in gene ontology and the highly enriched pathway of various bacterial infection, leukocyte transendothelial migration, apoptosis, and cell cycle in KEGG pathway. Importantly, Bcl7b, Bnip3, Bmx, Mcl1, and Pim1 were identified as critical regulators of neutrophil apoptosis, which may be potential drug targets for the treatment of neutropenia. We are currently testing the efficacy of the activators/inhibitors of the proteins encoded by these genes to investigate whether they would block DLBCL-induced neutrophil apoptosis. CONCLUSION: In the present study, bioinformatic analyses of gene expression profiling data revealed the crucial genes involved in neutrophil apoptosis and gave insight into the underlying mechanism. Given our data, it may be likely that novel opportunities for the treatment of neutropenia, and eventually improvement of prognosis of DLBCL patients, might emerge.


Assuntos
Linfoma Difuso de Grandes Células B , Neutropenia , Animais , Camundongos , Neutrófilos/metabolismo , Neutrófilos/patologia , Transcriptoma , Anticorpos Monoclonais Murinos/efeitos adversos , Anticorpos Monoclonais Murinos/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Rituximab/efeitos adversos , Rituximab/genética , Neutropenia/induzido quimicamente , Neutropenia/genética , Neutropenia/tratamento farmacológico , Doxorrubicina/farmacologia , Ciclofosfamida/efeitos adversos , Vincristina/efeitos adversos , Prednisona/efeitos adversos , Apoptose/genética , Perfilação da Expressão Gênica , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
15.
Pathogens ; 12(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37887734

RESUMO

The non-pharmaceutical interventions implemented to prevent the spread of COVID-19 have affected the epidemiology of other respiratory viruses. In South Korea, Human metapneumovirus (HMPV) typically occurs from winter to the following spring; however, it was not detected for two years during the COVID-19 pandemic and re-emerged in the fall of 2022, which is a non-epidemic season. To examine the molecular genetic characteristics of HMPV before and after the COVID-19 pandemic, we analyzed 427 HMPV-positive samples collected in the Gwangju area from 2018 to 2022. Among these, 24 samples were subjected to whole-genome sequencing. Compared to the period before the COVID-19 pandemic, the incidence rate of HMPV in 2022 increased by 2.5-fold. Especially in the age group of 6-10 years, the incidence rate increased by more than 4.5-fold. In the phylogenetic analysis results, before the COVID-19 pandemic, the A2.2.2 lineage was predominant, while in 2022, the A2.2.1 and B2 lineage were observed. The non-pharmaceutical interventions implemented after COVID-19, such as social distancing, have reduced opportunities for exposure to HMPV, subsequently leading to decreased acquisition of immunity. As a result, HMPV occurred during non-epidemic seasons, influencing the age distribution of its occurrences.

16.
Plant Pathol J ; 38(2): 167-174, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35385921

RESUMO

Pseudomonas amygdali is a hemibiotrophic phytopathogen that causes disease in woody and herbaceous plants. Complete genomes of four P. amygdali pathovars were comparatively analyzed to decipher the impact of genomic diversity on host colonization. The pan-genome indicated that 3,928 core genes are conserved among pathovars, while 504-1,009 are unique to specific pathovars. The unique genome contained many mobile elements and exhibited a functional distribution different from the core genome. Genes involved in O-antigen biosynthesis and antimicrobial peptide resistance were significantly enriched for adaptation to hostile environments. While the type III secretion system was distributed in the core genome, unique genomes revealed a different organization of secretion systems as follows: type I in pv. tabaci, type II in pv. japonicus, type IV in pv. morsprunorum, and type VI in pv. lachrymans. These findings provide genetic insight into the dynamic interactions of the bacteria with plant hosts.

17.
Front Plant Sci ; 13: 1030720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466249

RESUMO

Plant bacterial disease is a complex outcome achieved through a combination of virulence factors that are activated during infection. However, the common virulence factors across diverse plant pathogens are largely uncharacterized. Here, we established a pan-genome shared across the following plant pathogens: Burkholderia glumae, Ralstonia solanacearum, and Xanthomonas oryzae pv. oryzae. By overlaying in planta transcriptomes onto the pan-genome, we investigated the expression profiles of common genes during infection. We found over 70% of identical patterns for genes commonly expressed by the pathogens in different plant hosts or infection sites. Co-expression patterns revealed the activation of a signal transduction cascade to recognize and respond to external changes within hosts. Using mutagenesis, we uncovered a relationship between bacterial virulence and functions highly conserved and shared in the studied genomes of the bacterial phytopathogens, including flagellar biosynthesis protein, C4-dicarboxylate ABC transporter, 2-methylisocitrate lyase, and protocatechuate 3,4-dioxygenase (PCD). In particular, the disruption of PCD gene led to attenuated virulence in all pathogens and significantly affected phytotoxin production in B. glumae. This PCD gene was ubiquitously distributed in most plant pathogens with high homology. In conclusion, our results provide cross-species in planta models for identifying common virulence factors, which can be useful for the protection of crops against diverse pathogens.

18.
Microorganisms ; 9(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067383

RESUMO

Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.

19.
Plants (Basel) ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009038

RESUMO

Burkholderia glumae are bacteria pathogenic to rice plants that cause a disease called bacterial panicle blight (BPB) in rice panicles. BPB, induced by B. glumae, causes enormous economic losses to the rice agricultural industry. B. glumae also causes bacterial disease in other crops because it has various virulence factors, such as toxins, proteases, lipases, extracellular polysaccharides, bacterial motility, and bacterial secretion systems. In particular, B. glumae BGR1 harbors type VI secretion system (T6SS) with functionally distinct roles: the prokaryotic targeting system and the eukaryotic targeting system. The functional activity of T6SS requires 13 core components and T6SS accessory proteins, such as adapters containing DUF2169, DUF4123, and DUF1795 domains. There are two genes, bglu_1g23320 and bglu_2g07420, encoding the DUF2169 domain-containing protein in the genome of B. glumae BGR1. bglu_2g07420 belongs to the gene cluster of T6SS group_5 in B. glumae BGR1, whereas bglu_1g23320 does not belong to any T6SS gene cluster in B. glumae BGR1. T6SS group_5 of B. glumae BGR1 is involved in bacterial virulence in rice plants. The DUF2169 domain-containing protein with a single domain can function by itself; however, Δu1g23320 showed no attenuated virulence in rice plants. In contrast, Δu2g07420DUF2169 and Δu2g07420PPR did exhibit attenuated virulence in rice plants. These results suggest that the pentapeptide repeats region of the C-terminal additional domain, as well as the DUF2169 domain, is required for complete functioning of the DUF2169 domain-containing protein encoded by bglu_2g07420. bglu_2g07410, which encodes the pentapeptide repeats protein, composed of only the pentapeptide repeats region, is located downstream of bglu_2g07420. Δu2g07410 also shows attenuated virulence in rice plants. This finding suggests that the pentapeptide repeats protein, encoded by bglu_2g07410, is involved in bacterial virulence. This study is the first report that the DUF2169 domain-containing protein and pentapeptide repeats protein are involved in bacterial virulence to the rice plants as T6SS accessory proteins, encoded in the gene cluster of the T6SS group_5.

20.
Sci Rep ; 11(1): 626, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436839

RESUMO

Bacillus genus produces several secondary metabolites with biocontrol ability against various phytopathogens. Bacillus velezensis AK-0 (AK-0), an antagonistic strain isolated from Korean ginseng rhizospheric soil, was found to exhibit antagonistic activity against several phytopathogens. To further display the genetic mechanism of the biocontrol traits of AK-0, we report the complete genome sequence of AK-0 and compared it with complete genome sequences of closely related strains. We report the biocontrol activity of AK-0 against apple bitter rot caused by Colletotrichum gloeosporioides, which could lead to commercialization of this strain as a microbial biopesticide in Korea. To retain its biocontrol efficacy for a longer period, AK-0 has been formulated with ingredients for commercialization, named AK-0 product formulation (AK-0PF). AK-0PF played a role in the suppression of the mycelial growth of the fungicide-resistant pathogen C. gloeosporioides YCHH4 at a greater level than the non-treated control. Moreover, AK-0PF exhibited greater disease suppression of bitter rot in matured under field conditions. Here, we report the complete genome sequence of the AK-0 strain, which has a 3,969,429 bp circular chromosome with 3808 genes and a G+C content of 46.5%. The genome sequence of AK-0 provides a greater understanding of the Bacillus species, which displays biocontrol activity via secondary metabolites. The genome has eight potential secondary metabolite biosynthetic clusters, among which, ituD and bacD genes were expressed at a greater level than other genes. This work provides a better understanding of the strain AK-0, as an effective biocontrol agent (BCA) against phytopathogens, including bitter rot in apple.


Assuntos
Antifúngicos/administração & dosagem , Bacillus/fisiologia , Agentes de Controle Biológico/administração & dosagem , Colletotrichum/patogenicidade , Genoma Bacteriano , Malus/microbiologia , Doenças das Plantas/prevenção & controle , Mapeamento Cromossômico , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA