Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(16): 166201, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925700

RESUMO

Triboelectrification mechanism is still not understood, despite centuries of investigations. Here, we propose a model showing that mechanochemistry is key to elucidate triboelectrification fundamental properties. Studying contact between gold and silicate glasses, we observe that the experimental triboelectric output is subject to large variations and polarity inversions. First principles analysis shows that electronic transfer is activated by mechanochemistry and the tribopolarity is determined by the termination exposed to contact, depending on the material composition, which can result in different charging at the macroscale. The electron transfer mechanism is driven by the interface barrier dynamics, regulated by mechanical forces. The model provides a unified framework to explain several experimental observations, including the systematic variations in the triboelectric output and the mixed positive-negative "mosaic" charging patterns, and paves the way to the theoretical prediction of the triboelectric properties.

2.
Small ; 18(15): e2104472, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35187776

RESUMO

Ferroelectric and piezoelectric polymers have attracted great attention from many research and engineering fields due to its mechanical robustness and flexibility as well as cost-effectiveness and easy processibility. Nevertheless, the electrical performance of piezoelectric polymers is very hard to reach that of piezoelectric ceramics basically and physically, even in the case of the representative ferroelectric polymer, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). Very recently, the concept for the morphotropic phase boundary (MPB), which has been exclusive in the field of high-performance piezoelectric ceramics, has been surprisingly confirmed in P(VDF-TrFE) piezoelectric copolymers by the groups. This study demonstrates the exceptional behaviors reminiscent of MPB and relaxor ferroelectrics in the feature of widely utilized electrospun P(VDF-TrFE) nanofibers. Consequently, an energy harvesting device that exceeds the performance limitation of the existing P(VDF-TrFE) materials is developed. Even the unpoled MPB-based P(VDF-TrFE) nanofibers show higher output than the electrically poled normal P(VDF-TrFE) nanofibers. This study is the first step toward the manufacture of a new generation of piezoelectric polymers with practical applications.

3.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502209

RESUMO

In the ongoing fourth industrial revolution, the internet of things (IoT) will play a crucial role in collecting and analyzing information related to human healthcare, public safety, environmental monitoring and home/industrial automation. Even though conventional batteries are widely used to operate IoT devices as a power source, these batteries have a drawback of limited capacity, which impedes broad commercialization of the IoT. In this regard, piezoelectric energy harvesting technology has attracted a great deal of attention because piezoelectric materials can convert electricity from mechanical and vibrational movements in the ambient environment. In particular, piezoelectric-based flexible energy harvesters can precisely harvest tiny mechanical movements of muscles and internal organs from the human body to produce electricity. These inherent properties of flexible piezoelectric harvesters make it possible to eliminate conventional batteries for lifetime extension of implantable and wearable IoTs. This paper describes the progress of piezoelectric perovskite material-based flexible energy harvesters for self-powered IoT devices for biomedical/wearable electronics over the last decade.


Assuntos
Compostos de Cálcio , Internet das Coisas , Humanos , Óxidos , Próteses e Implantes
4.
Inorg Chem ; 59(5): 3042-3052, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31995361

RESUMO

As one of the perovskite families, potassium sodium niobates (K1-xNax)NbO3 (KNN) have been gaining tremendous attention due to their various functional properties which can be largely determined by their crystallographic phase and composition. However, a selective evolution of different phases for KNN with controlled composition can be difficult to achieve, especially in solution chemical synthesis because of its strong tendency to stabilize into orthorhombic phase at conventional synthetic temperature. We herein developed a facile solution approach to control the phase and composition of dopant-free KNN particles selectively through the modification of reaction parameters. A conventional hydrothermal synthesis method yielded orthorhombic KNN particles, while the monoclinic phase, which has never been observed in a bulk counterpart, was kinetically generated by the compositional modification of an intermediate phase under a high-intensity ultrasound irradiation. Cubic KNN particles were stabilized when ethylene glycol was used as a co-solvent together with deionized water through bonding between ethylene glycol molecules and the surface of the KNN. Composite-structured piezoelectric harvesters were fabricated using each phase of KNN particles and the ß-phase poly(vinylidene fluoride-co-trifluoroethylene) polymer. Maximum output power was found for the harvester containing orthorhombic KNN particles. This facile synthetic methodology could pave a new pathway for fabricating numerous phase-controlled materials.

5.
Sci Technol Adv Mater ; 20(1): 758-773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447955

RESUMO

Mechanical energy harvesting technology converting mechanical energy wasted in our surroundings to electrical energy has been regarded as one of the critical technologies for self-powered sensor network and Internet of Things (IoT). Although triboelectric energy harvesters based on contact electrification have attracted considerable attention due to their various advantages compared to other technologies, a further improvement of the output performance is still required for practical applications in next-generation IoT devices. In recent years, numerous studies have been carried out to enhance the output power of triboelectric energy harvesters. The previous research approaches for enhancing the triboelectric charges can be classified into three categories: i) materials type, ii) device structure, and iii) surface modification. In this review article, we focus on various mechanisms and methods through the surface modification beyond the limitations of structural parameters and materials, such as surficial texturing/patterning, functionalization, dielectric engineering, surface charge doping and 2D material processing. This perspective study is a cornerstone for establishing next-generation energy applications consisting of triboelectric energy harvesters from portable devices to power industries.

6.
Sensors (Basel) ; 19(6)2019 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-30909637

RESUMO

Improvement of energy harvesting performance from flexible thin film-based energy harvesters is essential to accomplish future self-powered electronics and sensor systems. In particular, the integration of harvesting signals should be established as a single device configuration without complicated device connections or expensive methodologies. In this research, we study the dual-film structures of the flexible PZT film energy harvester experimentally and theoretically to propose an effective principle for integrating energy harvesting signals. Laser lift-off (LLO) processes are used for fabrication because this is known as the most efficient technology for flexible high-performance energy harvesters. We develop two different device structures using the multistep LLO: a stacked structure and a double-faced (bimorph) structure. Although both structures are well demonstrated without serious material degradation, the stacked structure is not efficient for energy harvesting due to the ineffectively applied strain to the piezoelectric film in bending. This phenomenon stems from differences in position of mechanical neutral planes, which is investigated by finite element analysis and calculation. Finally, effectively integrated performance is achieved by a bimorph dual-film-structured flexible energy harvester. Our study will foster the development of various structures in flexible energy harvesters towards self-powered sensor applications with high efficiency.

7.
Sensors (Basel) ; 19(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085985

RESUMO

Designing a piezoelectric energy harvester (PEH) with high power density and high fatigue resistance is essential for the successful replacement of the currently using batteries in structural health monitoring (SHM) systems. Among the various designs, the PEH comprising of a cantilever structure as a passive layer and piezoelectric single crystal-based fiber composites (SFC) as an active layer showed excellent performance due to its high electromechanical properties and dynamic flexibilities that are suitable for low frequency vibrations. In the present study, an effort was made to investigate the reliable performance of hard and soft SFC based PEHs. The base acceleration of both PEHs is held at 7 m/s2 and the frequency of excitation is tuned to their resonant frequency (fr) and then the output power (Prms) is monitored for 107 fatigue cycles. The effect of fatigue cycles on the output voltage, vibration displacement, dielectric, and ferroelectric properties of PEHs was analyzed. It was noticed that fatigue-induced performance degradation is more prominent in soft SFC-based PEH (SS-PEH) than in hard SFC-based PEH (HS-PEH). The HS-PEH showed a slight degradation in the output power due to a shift in fr, however, no degradation in the maximum power was noticed, in fact, dielectric and ferroelectric properties were improved even after 107 vibration cycles. In this context, the present study provides a pathway to consider the fatigue life of piezoelectric material for the designing of PEH to be used at resonant conditions for long-term operation.

8.
Small ; 14(19): e1704022, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29655226

RESUMO

In the past two decades, mechanical energy harvesting technologies have been developed in various ways to support or power small-scale electronics. Nevertheless, the strategy for enhancing current and charge performance of flexible piezoelectric energy harvesters using a simple and cost-effective process is still a challenging issue. Herein, a 1D-3D (1-3) fully piezoelectric nanocomposite is developed using perovskite BaTiO3 (BT) nanowire (NW)-employed poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) for a high-performance hybrid nanocomposite generator (hNCG) device. The harvested output of the flexible hNCG reaches up to ≈14 V and ≈4 µA, which is higher than the current levels of even previous piezoceramic film-based flexible energy harvesters. Finite element analysis method simulations study that the outstanding performance of hNCG devices attributes to not only the piezoelectric synergy of well-controlled BT NWs and within P(VDF-TrFE) matrix, but also the effective stress transferability of piezopolymer. As a proof of concept, the flexible hNCG is directly attached to a hand to scavenge energy using a human motion in various biomechanical frequencies for self-powered wearable patch device applications. This research can pave the way for a new approach to high-performance wearable and biocompatible self-sufficient electronics.

9.
Nano Lett ; 12(9): 4810-6, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22845667

RESUMO

High-performance flexible power sources have gained attention, as they enable the realization of next-generation bendable, implantable, and wearable electronic systems. Although the rechargeable lithium-ion battery (LIB) has been regarded as a strong candidate for a high-performance flexible energy source, compliant electrodes for bendable LIBs are restricted to only a few materials, and their performance has not been sufficient for them to be applied to flexible consumer electronics including rollable displays. In this paper, we present a flexible thin-film LIB developed using the universal transfer approach, which enables the realization of diverse flexible LIBs regardless of electrode chemistry. Moreover, it can form high-temperature (HT) annealed electrodes on polymer substrates for high-performance LIBs. The bendable LIB is then integrated with a flexible light-emitting diode (LED), which makes an all-in-one flexible electronic system. The outstanding battery performance is explored and well supported by finite element analysis (FEA) simulation.


Assuntos
Fontes de Energia Elétrica , Eletrônica/instrumentação , Compostos Inorgânicos/química , Lítio/química , Nanoestruturas/química , Nanotecnologia/instrumentação , Semicondutores , Desenho Assistido por Computador , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da Partícula
10.
Materials (Basel) ; 16(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512187

RESUMO

Dielectric materials are highly desired for pulsed power capacitors due to their ultra-fast charge-discharge rate and excellent fatigue behavior. Nevertheless, the low energy storage density caused by the low breakdown strength has been the main challenge for practical applications. Herein, we report the electric energy storage properties of (1 - x) Bi0.5(Na0.8K0.2)0.5TiO3-xBi0.2Sr0.7TiO3 (BNKT-BST; x = 0.15-0.50) relaxor ferroelectric ceramics that are enhanced via a domain engineering method. A rhombohedral-tetragonal phase, the formation of highly dynamic PNRs, and a dense microstructure are confirmed from XRD, Raman vibrational spectra, and microscopic investigations. The relative dielectric permittivity (2664 at 1 kHz) and loss factor (0.058) were gradually improved with BST (x = 0.45). The incorporation of BST into BNKT can disturb the long-range ferroelectric order, lowering the dielectric maximum temperature Tm and inducing the formation of highly dynamic polar nano-regions. In addition, the Tm shifts toward a high temperature with frequency and a diffuse phase transition, indicating relaxor ferroelectric characteristics of BNKT-BST ceramics, which is confirmed by the modified Curie-Weiss law. The rhombohedral-tetragonal phase, fine grain size, and lowered Tm with relaxor properties synergistically contribute to a high Pmax and low Pr, improving the breakdown strength with BST and resulting in a high recoverable energy density Wrec of 0.81 J/cm3 and a high energy efficiency η of 86.95% at 90 kV/cm for x = 0.45.

11.
ACS Nano ; 16(9): 15328-15338, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36074084

RESUMO

We herein report a facile molten-salt synthetic strategy to prepare transparent and uniform Li, Ba-doped (K,Na)NbO3 (KNN) single-crystal microcuboids (∼80 µm). By controlling the degree of supersaturation, different growth modes were found and the single-crystal microcuboids were synthesized via island-like oriented attachment of KNN particles onto the growing surface. The distinct relaxor ferroelectric (RFE) properties were achieved in the single-crystal microcuboids, which were different from the normal ferroelectric (FE) properties found in their KNN ceramic counterparts prepared through a solid-state reaction using the same initial precursors. The RFE properties were realized by dislocation-induced nanodomain formation during oriented attachment growth of single-crystal microcuboids, which is different from the current strategies to derive the nanodomains by the local compositional inhomogeneity or the application of an electric field. The dislocations served as nucleation sites for ferroelectric domain walls and block the growth of domains. The KNN single-crystal microcuboids exhibited a higher effective piezoelectric coefficient (∼459 pm/V) compared to that of the bulk KNN ceramic counterpart (∼90 pm/V) and showed the broad diffuse maxima in the temperature dependence dielectric permittivity. The high maximum polarization (69.6 µC/cm2) at a relatively low electric field (30 kV/cm) was beneficial for energy storage applications. Furthermore, the KNN-based transparent, flexible pressure sensor directly monitored the mechanical motion of human activity without any external electric power. This study provides insights and synthetic strategies of single-crystal RFE microcuboids for other different perovskites, in which nanodomain structures are primarily imposed by their chemical composition.

12.
Nano Lett ; 10(12): 4939-43, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21050010

RESUMO

The piezoelectric generation of perovskite BaTiO3 thin films on a flexible substrate has been applied to convert mechanical energy to electrical energy for the first time. Ferroelectric BaTiO3 thin films were deposited by radio frequency magnetron sputtering on a Pt/Ti/SiO2/(100) Si substrate and poled under an electric field of 100 kV/cm. The metal-insulator (BaTiO3)-metal-structured ribbons were successfully transferred onto a flexible substrate and connected by interdigitated electrodes. When periodically deformed by a bending stage, a flexible BaTiO3 nanogenerator can generate an output voltage of up to 1.0 V. The fabricated nanogenerator produced an output current density of 0.19 µA/cm(2) and a power density of ∼7 mW/cm(3). The results show that a nanogenerator can be used to power flexible displays by means of mechanical agitations for future touchable display technologies.

13.
ACS Appl Mater Interfaces ; 13(4): 5125-5132, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33478215

RESUMO

Power generation through the thermoelectric (TE) effect in small-sized devices requires a submillimeter-thick film that is beneficial to effectively maintain ΔT compared with a micron-scale thin film. However, most TE thick films, which are fabricated using printing technologies, suffer from low electrical conductivity due to the porous structures formed after sintering of the organic binder-mixed TE ink. In this study, we report an n-type TE thick film fabricated through bar-coating of the edge-oxidized-graphene (EOG)-dispersed Bi2.0Te2.7Se0.3 (BTS) paste with copper dopants. We have found that EOG provides the conducting pathway for carriers through electrical bridging between the separated BTS grains in porous TE thick films. The simultaneous enhancement in electrical conductivity and the Seebeck coefficient of the EOG-bridged TE film result in a maximum power factor of 1.54 mW·m-1·K-2 with the addition of 0.01 wt % EOG. Furthermore, the single element made of an n-type EOG-bridged BTS exhibits a superior output power of 1.65 µW at ΔT = 80 K. These values are 5 times higher than those of bare BTS films. Our results clearly indicate that the utilization of EOG with a metal dopant exerts a synergistic effect for enhancing the electrical output performance of n-type TE thick films for thermal energy harvesters.

14.
ACS Appl Mater Interfaces ; 11(41): 37920-37926, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31549809

RESUMO

Two-dimensional (2D) piezoelectric hexagonal boron nitride nanoflakes (h-BN NFs) were synthesized by a mechanochemical exfoliation process and transferred onto an electrode line-patterned plastic substrate to characterize the energy harvesting ability of individual NFs by external stress. A single BN NF produced alternate piezoelectric output sources of ∼50 mV and ∼30 pA when deformed by mechanical bendings. The piezoelectric voltage coefficient (g11) of a single BN NF was experimentally determined to be 2.35 × 10-3 V·m·N-1. The piezoelectric composite composed of BN NFs and an elastomer was spin-coated onto a bulk Si substrate and then transferred onto the electrode-coated plastic substrates to fabricate a BN NFs-based flexible piezoelectric energy harvester (f-PEH) which converted a piezoelectric voltage of ∼9 V, a current of ∼200 nA, and an effective output power of ∼0.3 µW. This result provides a new strategy for precisely characterizing the energy generation ability of piezoelectric nanostructures and for demonstrating f-PEH based on 2D piezomaterials.

15.
Nano Converg ; 3(1): 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28191422

RESUMO

Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

16.
Nanoscale ; 8(40): 17632-17638, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722725

RESUMO

Lead-free piezoelectric 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 (BCTZ) nanoparticles (NPs) composed of earth-abundant elements were adopted for use in a flexible composite-based piezoelectric energy harvester (PEH) that can convert mechanical deformation into electrical energy. The solid-state synthesized BCTZ NPs and silver nanowires (Ag NWs) chosen to reduce the toxicity of the filler materials were blended with a polydimethylsiloxane (PDMS) matrix to produce a piezoelectric nanocomposite (p-NC). The naturally flexible polymer-based p-NC layers were sandwiched between two conductive polyethylene terephthalate plastic substrates to achieve a flexible energy harvester. The BCTZ NP-based PEH effectively generated an output voltage peak of ∼15 V and a current signal of ∼0.8 µA without time-dependent degradation. This output was adequate to operate a liquid crystal display (LCD) and to turn on six blue light emitting diodes (LEDs).

17.
ACS Nano ; 8(9): 9492-502, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25192434

RESUMO

Resistive random access memory (ReRAM) is a promising candidate for future nonvolatile memories. Resistive switching in a metal-insulator-metal structure is generally assumed to be caused by the formation/rupture of nanoscale conductive filaments (CFs) under an applied electric field. The critical issue of ReRAM for practical memory applications, however, is insufficient repeatability of the operating voltage and resistance ratio. Here, we present an innovative approach to reliably and reproducibly control the CF growth in unipolar NiO resistive memory by exploiting uniform formation of insulating SiOx nanostructures from the self-assembly of a Si-containing block copolymer. In this way, the standard deviation (SD) of set and reset voltages was markedly reduced by 76.9% and 59.4%, respectively. The SD of high resistance state also decreased significantly, from 6.3 × 10(7) Ω to 5.4 × 10(4) Ω. Moreover, we report direct observations of localized metallic Ni CF formation and their controllable growth using electron microscopy and discuss electrothermal simulation results based on the finite element method supporting our analysis results.

18.
Nanoscale ; 6(15): 8962-8, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24967905

RESUMO

We have synthesized BaTiO3 nanowires (NWs) via a simple hydrothermal method at low temperature and developed a lead-free, flexible nanocomposite generator (NCG) device by a simple, low-cost, and scalable spin-coating method. The hydrothermally grown BaTiO3 NWs are mixed in a polymer matrix without a toxic dispersion enhancer to produce a piezoelectric nanocomposite (p-NC). During periodical and regular bending and unbending motions, the NCG device fabricated by utilizing a BaTiO3 NWs-polydimethylsiloxane (PDMS) composite successfully harvests the output voltage of ∼ 7.0 V and current signals of ∼ 360 nA, which are utilized to drive a liquid crystal display (LCD). We also characterized the instantaneous power (∼ 1.2 µW) of the NCG device by calculating the load voltage and current through the connected external resistance.

19.
Adv Mater ; 26(44): 7480-7, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25200396

RESUMO

Crossbar-structured memory comprising 32 × 32 arrays with one selector-one resistor (1S-1R) components are initially fabricated on a rigid substrate. They are transferred without mechanical damage via an inorganic-based laser lift-off (ILLO) process as a result of laser-material interaction. Addressing tests of the transferred memory arrays are successfully performed to verify mitigation of cross-talk on a plastic substrate.


Assuntos
Equipamentos e Provisões Elétricas , Plásticos , Maleabilidade , Simulação por Computador , Impedância Elétrica , Desenho de Equipamento , Vidro , Lasers , Modelos Lineares , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Níquel/química , Dinâmica não Linear , Plásticos/química , Temperatura , Titânio/química
20.
Adv Mater ; 26(16): 2514-20, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24523251

RESUMO

A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 µA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs.


Assuntos
Cerâmica/química , Fontes de Energia Elétrica , Eletricidade , Fenômenos Mecânicos , Nanotecnologia/métodos , Plásticos/química , Humanos , Lasers , Nanocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA