RESUMO
BACKGROUND: The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS: The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS: Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS: Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.
Assuntos
Aterosclerose , Calcinose , Placa Aterosclerótica , Calcificação Vascular , Camundongos , Humanos , Animais , Músculo Liso Vascular/metabolismo , Células Cultivadas , Aterosclerose/metabolismo , Placa Aterosclerótica/patologia , Calcinose/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA/metabolismo , Calcificação Vascular/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Tiorredoxinas/metabolismoRESUMO
Lipid accumulation in macrophages is a prominent phenomenon observed in atherosclerosis. Previously, intimal foamy macrophages (FM) showed decreased inflammatory gene expression compared to intimal non-foamy macrophages (NFM). Since reprogramming of lipid metabolism in macrophages affects immunological functions, lipid profiling of intimal macrophages appears to be important for understanding the phenotypic changes of macrophages in atherosclerotic lesions. While lipidomic analysis has been performed in atherosclerotic aortic tissues and cultured macrophages, direct lipid profiling has not been performed in primary aortic macrophages from atherosclerotic aortas. We utilized nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry to provide comprehensive lipid profiles of intimal non-foamy and foamy macrophages and adventitial macrophages from Ldlr-/- mouse aortas. We also analyzed the gene expression of each macrophage type related to lipid metabolism. FM showed increased levels of fatty acids, cholesterol esters, phosphatidylcholine, lysophosphatidylcholine, phosphatidylinositol, and sphingomyelin. However, phosphatidylethanolamine, phosphatidic acid, and ceramide levels were decreased in FM compared to those in NFM. Interestingly, FM showed decreased triacylglycerol (TG) levels. Expressions of lipolysis-related genes including Pnpla2 and Lpl were markedly increased but expressions of Lpin2 and Dgat1 related to TG synthesis were decreased in FM. Analysis of transcriptome and lipidome data revealed differences in the regulation of each lipid metabolic pathway in aortic macrophages. These comprehensive lipidomic data could clarify the phenotypes of macrophages in the atherosclerotic aorta.
RESUMO
Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-IIhi macrophages. Interestingly, we find activated PPARγ pathway in Cd36+ valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation.
Assuntos
Estenose da Valva Aórtica , Calcinose , Hiperlipidemias , Animais , Valva Aórtica/metabolismo , Calcinose/genética , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Imunomodulação , Inflamação/genética , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Pioglitazona/farmacologia , TranscriptomaRESUMO
BACKGROUND & AIMS: Helicobacter pylori has been reported to modulate local immune responses to colonize persistently in gastric mucosa. Although the induced expression of programmed cell death ligand 1 (PD-L1) has been suggested as an immune modulatory mechanism for persistent infection of H pylori, the main immune cells expressing PD-L1 and their functions in Helicobacter-induced gastritis still remain to be elucidated. METHODS: The blockades of PD-L1 with antibody or PD-L1-deficient bone marrow transplantation were performed in Helicobacter-infected mice. The main immune cells expressing PD-L1 in Helicobacter-infected stomach were determined by flow cytometry and immunofluorescence staining. Helicobacter felis or H pylori-infected dendritic cell (DC)-deficient mouse models including Flt3-/-, Zbtb46-diphtheria toxin receptor, and BDCA2-diphtheria toxin receptor mice were analyzed for pathologic changes and colonization levels. Finally, the location of PD-L1-expressing DCs and the correlation with H pylori infection were analyzed in human gastric tissues using multiplexed immunohistochemistry. RESULTS: Genetic or antibody-mediated blockade of PD-L1 aggravated Helicobacter-induced gastritis with mucosal metaplasia. Gastric classical DCs expressed considerably higher levels of PD-L1 than other immune cells and co-localized with T cells in gastritis lesions from Helicobacter-infected mice and human beings. H felis- or H pylori-infected Flt3-/- or classical DC-depleted mice showed aggravated gastritis with severe T-cell and neutrophil accumulation with low bacterial loads compared with that in control mice. Finally, PD-L1-expressing DCs were co-localized with T cells and showed a positive correlation with H pylori infection in human subjects. CONCLUSIONS: The PD-1/PD-L1 pathway may be responsible for the immune modulatory function of gastric DCs that protects the gastric mucosa from Helicobacter-induced inflammation, but allows persistent Helicobacter colonization.