Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717391

RESUMO

Loliolide is a monoterpenoid hydroxylactone present in freshwater algae that has anti-inflammatory and antiaging activity; however, its effects on ultraviolet-damaged skin have yet to be elucidated. This study investigated the antiapoptosis and wound-healing effects of loliolide using HaCaT cells (a human keratinocyte cell line). Loliolide inhibited the expression of reactive oxygen species (ROS) induced by ultraviolet radiation as well as wrinkle formation-related matrix metalloproteinase genes and increased the expression of the damage repair-related gene SIRT1. The apoptosis signaling pathway was confirmed by Western blot analysis, which showed that loliolide was able to reduce the expression of caspases 3, 8, and 9, which are related to ROS-induced apoptosis. In addition, Western blotting, reverse-transcription polymerase chain reaction (PCR), and real-time PCR analyses showed that loliolide enhanced the expression of the epidermal growth factor receptor signaling pathway (PI3K, AKT) and migration factors, such as K6, K16, and K17; keratinocyte growth factor; and inflammatory cytokines, such as interleukin (IL)-1, IL-17, and IL-22 expressed during the cellular scratching process, suggesting a putative wound-healing ability. Because of the antiapoptosis and antiscratching effects on skin of both loliolide and loliolide-rich Prasiola japonica ethanol extract, we consider the former to be an important compound used in the cosmeceutical industry.


Assuntos
Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Estrutura Molecular
2.
Int J Mol Sci ; 19(9)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231594

RESUMO

Loliolide is a monoterpenoid hydroxylactone found in many algae, including fresh water green algae, Prasiola japonica. To date, loliolide and compounds in P. japonica have not been studied systematically with respect to skin pharmacology. In this study, we investigated oxidative stress-protective and anti-melanogenic effects of loliolide and P. japonica ethanol extract (Pj-EE), known to contain loliolide, in human keratinocyte (HaCaT) cells and mouse melanoma (B16F10) cells. Loliolide suppressed the transcription of genes encoding matrix metalloproteinases (MMPS), which were induced in HaCaT cells by hydrogen peroxide (H2O2) treatment. Loliolide and Pj-EE not only reduced the melanin secretion and content in B16F10 cells but also increased the expression of the antioxidant proteins nuclear factor (erythroid-derived 2)-like 2 (NRF2) and heme oxygenase-1 (HO-1) in HaCaT cells subjected to H2O2 treatment. Furthermore, loliolide and Pj-EE decreased expression of the anti-melanogenic protein microphthalmia-associated transcription factor (MITF) and tyrosinase in B16F10 cells subjected to α-melanocyte-stimulating hormone (α-MSH) treatment. Our findings demonstrate that loliolide and Pj-EE have antioxidant and anti-melanogenic effects on skin.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Benzofuranos/farmacologia , Clorófitas/química , Melaninas/metabolismo , Melanoma/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antineoplásicos/química , Antioxidantes/química , Benzofuranos/química , Linhagem Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melaninas/genética , Melanoma/genética , Melanoma/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo
3.
Biomolecules ; 10(4)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326535

RESUMO

Alverine, a smooth muscle relaxant, is used to relieve cramps or spasms of the stomach and intestine. Although the effects of alverine on spontaneous and induced contractile activity are well known, its anti-inflammatory activity has not been fully evaluated. In this study, we investigated the anti-inflammatory effects of alverine in vitro and in vivo. The production of nitric oxide (NO) in RAW264.7 cells activated by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly (I:C)) was reduced by alverine. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) was also dose-dependently inhibited by treatment with alverine. In reporter gene assays, alverine clearly decreased luciferase activity, mediated by the transcription factor nuclear factor κB (NF-κB) in TIR-domain-containing adapter-inducing interferon-ß (TRIF)- or MyD88-overexpressing HEK293 cells. Additionally, phosphorylation of NF-κB subunits and upstream signaling molecules, including p65, p50, AKT, IκBα, and Src was downregulated by 200 µM of alverine in LPS-treated RAW264.7 cells. Using immunoblotting and cellular thermal shift assays (CETSAs), Src was identified as the target of alverine in its anti-inflammatory response. In addition, HCl/EtOH-stimulated gastric ulcers in mice were ameliorated by alverine at doses of 100 and 200 mg/kg. In conclusion, alverine reduced inflammatory responses by targeting Src in the NF-κB pathway, and these findings provide new insights into the development of anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Propilaminas/farmacologia , Quinases da Família src/antagonistas & inibidores , Doença Aguda , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Propilaminas/química , Propilaminas/uso terapêutico , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Quinases da Família src/metabolismo
4.
Am J Chin Med ; 47(8): 1853-1868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31786945

RESUMO

Skin is the outer tissue layer and is a barrier protecting the body from various external stresses. The fresh water green edible algae Prasiola japonica has antiviral, antimicrobial, and anti-inflammatory properties; however, few studies of its effects on skin-protection have been reported. In this study, Prasiola japonica ethanol extract (Pj-EE) was prepared, and its skin-protective properties were investigated in skin keratinocytes. Pj-EE inhibited ROS production in UVB-irradiated HaCaT cells without cytotoxicity. Pj-EE also suppressed the apoptotic death of UVB-irradiated HaCaT cells by decreasing the generation of apoptotic bodies and the proteolytic activation of apoptosis caspase-3, -8, and -9. Moreover, Pj-EE downregulated the mRNA expression of the inflammatory gene cyclooxygenase-2 (COX-2), the pro-inflammatory cytokine genes interleukin (IL)-1ß, IL-8, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, and the tissue remodeling genes matrix metalloproteinase (MMP)-1, -2, -3, and -9. The Pj-EE-induced anti-inflammatory effect was mediated by suppressing the activation of nuclear factor-kappa B (NF-κB) signaling pathway in the UVB-irradiated HaCaT cells. Taken together, these results suggest that Pj-EE exerts skin-protective effects through anti-oxidant, anti-apoptotic, and anti-inflammatory activities in skin keratinocytes.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Clorófitas/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Humanos , Interferon gama/genética , Interferon gama/imunologia , Queratinócitos/citologia , Queratinócitos/imunologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Substâncias Protetoras/farmacologia , Pele/citologia , Pele/imunologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA