Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15222-15231, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585077

RESUMO

Macroporous polymers have gained significant attention due to their unique mass transport and size-selective properties. In this study, we focused on Polyimide (PI), a high-performance polymer, as an ideal candidate for macroporous structures. Despite various attempts to create macroporous PI (Macro PI) using emulsion templates, challenges remained, including limited chemical diversity and poor control over pore size and porosity. To address these issues, we systematically investigated the role of poly(amic acid) salt (PAAS) polymers as macrosurfactants and matrices. By designing 12 different PAAS polymers with diverse chemical structures, we achieved stable high internal phase emulsions (HIPEs) with >80 vol % internal volume. The resulting Macro PIs exhibited exceptional porosity (>99 vol %) after thermal imidization. We explored the structure-property relationships of these Macro PIs, emphasizing the importance of controlling pore size distribution. Furthermore, our study demonstrated the utility of these Macro PIs as separators in Li-metal batteries, providing stable charging-discharging cycles. Our findings not only enhance the understanding of emulsion-based macroporous polymers but also pave the way for their applications in advanced energy storage systems and beyond.

2.
RSC Adv ; 9(35): 20248-20255, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35514722

RESUMO

Excellent mechanical, electrical, and thermal properties of graphene have been achieved at the macroscale by assembling individual graphene or graphene oxide (GO) particles. Wet-spinning is an efficient and well-established process that can provide GO assemblies in fiber form. The coagulation bath in the wet-spinning process has rarely been considered for the design of mechanically robust GO fibers (GOFs). In this study, locating the amidation reaction in the coagulation bath yielded mechanically improved GOFs. The imides 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide were used to form covalent amide bonds between GO flakes and chitosan, thereby reinforcing the GOFs. Evidence and effects of the amidation reaction were systematically examined. The tensile strength and breaking strain of the GOFs improved by 41.6% and 75.2%, respectively, and the toughness almost doubled because of the optimized crosslinking reaction. Our work demonstrated that using a coagulation bath is a facile way to enhance the mechanical properties of GOFs.

3.
Nat Commun ; 8(1): 1050, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051489

RESUMO

Immunotherapy has emerged as a promising anti-cancer treatment, however, little is known about the genetic characteristics that dictate response to immunotherapy. We develop a transcriptional predictor of immunotherapy response and assess its prediction in genomic data from ~10,000 human tissues across 30 different cancer types to estimate the potential response to immunotherapy. The integrative analysis reveals two distinct tumor types: the mutator type is positively associated with potential response to immunotherapy, whereas the chromosome-instable type is negatively associated with it. We identify somatic mutations and copy number alterations significantly associated with potential response to immunotherapy, in particular treatment with anti-CTLA-4 antibody. Our findings suggest that tumors may evolve through two different paths that would lead to marked differences in immunotherapy response as well as different strategies for evading immune surveillance. Our analysis provides resources to facilitate the discovery of predictive biomarkers for immunotherapy that could be tested in clinical trials.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Dosagem de Genes , Neoplasias/terapia , Animais , Anticorpos/uso terapêutico , Antígeno CTLA-4/imunologia , Expressão Gênica , Marcadores Genéticos , Genômica , Humanos , Imunoterapia , Camundongos , Mutação , Neoplasias/classificação , Neoplasias/genética , Neoplasias/virologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA