Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774678

RESUMO

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Regulação da Expressão Gênica , Inflamação/patologia , Microglia/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Epigenoma
2.
Cell ; 186(20): 4422-4437.e21, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774680

RESUMO

Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.


Assuntos
Doença de Alzheimer , Encéfalo , Regulação da Expressão Gênica , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Epigenoma , Epigenômica , Estudo de Associação Genômica Ampla
3.
Nature ; 590(7845): 300-307, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536621

RESUMO

Annotating the molecular basis of human disease remains an unsolved challenge, as 93% of disease loci are non-coding and gene-regulatory annotations are highly incomplete1-3. Here we present EpiMap, a compendium comprising 10,000 epigenomic maps across 800 samples, which we used to define chromatin states, high-resolution enhancers, enhancer modules, upstream regulators and downstream target genes. We used this resource to annotate 30,000 genetic loci that were associated with 540 traits4, predicting trait-relevant tissues, putative causal nucleotide variants in enriched tissue enhancers and candidate tissue-specific target genes for each. We partitioned multifactorial traits into tissue-specific contributing factors with distinct functional enrichments and disease comorbidity patterns, and revealed both single-factor monotropic and multifactor pleiotropic loci. Top-scoring loci frequently had multiple predicted driver variants, converging through multiple enhancers with a common target gene, multiple genes in common tissues, or multiple genes and multiple tissues, indicating extensive pleiotropy. Our results demonstrate the importance of dense, rich, high-resolution epigenomic annotations for the investigation of complex traits.


Assuntos
Doença/genética , Epigênese Genética/genética , Epigenômica , Redes Reguladoras de Genes/genética , Loci Gênicos/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Herança Multifatorial/genética , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes
4.
Environ Res ; 252(Pt 1): 118839, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570131

RESUMO

Weeds pose multifaceted challenges in rice cultivation, leading to substantial economic losses through reduced yield and poor grain quality. Harnessing the natural genetic diversity in germplasm collections becomes crucial for identifying novel herbicide resistance loci in crops. A comprehensive analysis was conducted on 475 rice accessions from the KRICE depository, assessing their response to TFT (tefuryltrione) and probing the underlying HIS1 (HPPD INHIBITOR SENSITIVE 1) genotypic variations. The HIS1 gene, responsible for detoxifying benzobicyclon (BBC) and imparting broad-spectrum herbicide resistance, holds significant promise in rice breeding. This study explores the genetic landscape of HIS1 within Korean rice collection (KRICE), aiming to unveil genetic variations, haplotype diversity, and evolutionary relationships across diverse rice ecotypes. The indica ecotype showed the highest nucleotide diversity, while the wild and temperate japonica groups exhibited low diversity, hinting at selective sweeps and possible population expansion. Negative Tajima's D values in temperate japonica and wild groups indicate an excess of low-frequency mutations, potentially resulting from selective sweeps. In contrast, with positive Tajima's D values, admixture, indica, and aus groups suggest balancing selection. Furthermore, haplotype analysis uncovered 42 distinct haplotypes within KRICE, with four shared haplotypes between cultivated and wild accessions, four specific to cultivated accessions, and 34 specific to wild types. Phenotypic assessments of these haplotypes revealed that three haplotypes, viz., Hap_1 (predominant in japonica), Hap_2 (predominant in indica), and Hap_3 (specific to indica), displayed significant differences from aus-specific Hap_4 and indica-specific Hap_5. This study offers insights into genetic diversity, selective pressures, and ecotype-specific responses, ultimately paving the way for developing HPPD-inhibiting herbicide-resistant rice cultivars.


Assuntos
Variação Genética , Haplótipos , Herbicidas , Oryza , Oryza/genética , Resistência a Herbicidas/genética , Evolução Molecular
5.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38375908

RESUMO

This study presents findings indicating that the ferroelectric tunnel junction (FTJ) or resistive random-access memory (RRAM) in one cell can be intentionally selected depending on the application. The HfAlO film annealed at 700 °C shows stable FTJ characteristics and can be converted into RRAM by forming a conductive filament inside the same cell, that is, the process of intentionally forming a conductive filament is the result of defect generation and redistribution, and applying compliance current prior to a hard breakdown event of the dielectric film enables subsequent RRAM operation. The converted RRAM demonstrated good memory performance. Through current-voltage fitting, it was confirmed that the two resistance states of the FTJ and RRAM had different transport mechanisms. In the RRAM, the 1/f noise power of the high-resistance state (HRS) was about ten times higher than that of the low-resistance state (LRS). This is because the noise components increase due to the additional current paths in the HRS. The 1/f noise power according to resistance states in the FTJ was exactly the opposite result from the case of the RRAM. This is because the noise component due to the Poole-Frenkel emission is added to the noise component due to the tunneling current in the LRS. In addition, we confirmed the potentiation and depression characteristics of the two devices and further evaluated the accuracy of pattern recognition through a simulation by considering a dataset from the Modified National Institute of Standards and Technology.

6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731894

RESUMO

Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.


Assuntos
Proliferação de Células , Diterpenos , Compostos de Epóxi , Fenantrenos , Receptor Notch1 , Fator de Transcrição STAT3 , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Compostos de Epóxi/farmacologia , Fenantrenos/farmacologia , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
7.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38099552

RESUMO

We investigate a synaptic device with short-term memory characteristics using IGZO/SnOx as the switching layer. The thickness and components of each layer are analyzed by using x-ray photoelectron spectroscopy and transmission electron microscopy. The memristor exhibits analog resistive switching and a volatile feature with current decay over time. Moreover, through ten cycles of potentiation and depression, we demonstrate stable conductance modulation, leading to high-accuracy Modified National Institute of Standards and Technology pattern recognition. We effectively emulate the learning system of a biological synapse, including paired-pulse facilitation, spiking-amplitude-dependent plasticity, and spiking-rate-dependent plasticity (SRDP) by pulse trains. Ultimately, 4-bit reservoir computing divided into 16 states is incarnated using a pulse stream considering short-term memory plasticity and decay properties.

8.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38054517

RESUMO

This study presents a preliminary exploration of thermally oxidized TaOx-based memristors and their potential as artificial synapses. Unlike the 10-min annealed devices, which display instability due to current overshoots, the 5-min annealed device exhibits stable resistive switching, retention, and endurance characteristics. Moreover, our memristor showcases synaptic behaviors encompassing potentiation, depression, spike-timing-dependent plasticity, and excitatory postsynaptic currents. This synaptic emulation holds tremendous promise for applications in neuromorphic computing, offering the opportunity to replicate the adaptive learning principles observed in biological synapses. In addition, we evaluate the device's suitability for pattern recognition within a neural network using the modified National Institute of Standards and Technology dataset. Our assessment reveals that the Pt/TaOx/Ta memristor with an oxidized insulator achieves outstanding potential manifested by an accuracy of 93.25% for the identical pulse scheme and an impressive accuracy of 95.42% for the incremental pulse scheme.

9.
BMC Med Imaging ; 23(1): 92, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460984

RESUMO

BACKGROUND: Technetium-99 m 3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) and technetium-99 m sodium pyrophosphate (PYP) are the two most commonly used radiotracers for cardiac amyloidosis (CA), but no studies have directly compared them. Therefore, in this study, we directly compared the diagnostic and clinical utility of DPD and PYP scintigraphy in patients with CA. METHODS: Ten patients with CA were enrolled. Eight clinical variables and 12 scintigraphic parameters were used. Clinical variables were age, sex, estimated glomerular filtration rate (eGFR), N-terminal pro brain natriuretic peptide (NT-proBNP), and the results of electromyography (EMG), a sensory test, electrocardiogram, and echocardiography (EchoCG). Four heart retention ratios (heart/whole-body profile, heart/pelvis, heart/skull, and heart/contralateral lung) were calculated from the DPD and PYP scans and two visual scoring systems (Perugini and Dorbala systems) were used. Comparative analyses were performed between radiotracers and between visual scoring systems using clinical variables and scintigraphic parameters. RESULTS: Twenty DPD parameters and nine PYP parameters had significant associations with age, eGFR, NT-proBNP, EchoCG, and EMG. DPD parameters had more frequent significant associations with clinical variables than PYP parameters. Compared to visual scores in the DPD scan, the proportion of patients with higher visual scores in the PYP scan was relatively greater than those with lower visual scores, and there were more patients with a visual score of 2 or higher in PYP scans than DPD scans. CONCLUSIONS: DPD scintigraphy may reflect the disease severity of CA better than PYP scintigraphy, whereas PYP scintigraphy may be a more sensitive imaging modality for identifying CA involvement.


Assuntos
Amiloidose , Cardiomiopatias , Humanos , Amiloidose/diagnóstico por imagem , Tecnécio , Coração/diagnóstico por imagem , Cintilografia , Pirofosfato de Tecnécio Tc 99m , Cardiomiopatias/diagnóstico por imagem , Compostos Radiofarmacêuticos
10.
Am J Hum Genet ; 104(5): 896-913, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051114

RESUMO

Recent studies have highlighted the role of gene networks in disease biology. To formally assess this, we constructed a broad set of pathway, network, and pathway+network annotations and applied stratified LD score regression to 42 diseases and complex traits (average N = 323K) to identify enriched annotations. First, we analyzed 18,119 biological pathways. We identified 156 pathway-trait pairs whose disease enrichment was statistically significant (FDR < 5%) after conditioning on all genes and 75 known functional annotations (from the baseline-LD model), a stringent step that greatly reduced the number of pathways detected; most significant pathway-trait pairs were previously unreported. Next, for each of four published gene networks, we constructed probabilistic annotations based on network connectivity. For each gene network, the network connectivity annotation was strongly significantly enriched. Surprisingly, the enrichments were fully explained by excess overlap between network annotations and regulatory annotations from the baseline-LD model, validating the informativeness of the baseline-LD model and emphasizing the importance of accounting for regulatory annotations in gene network analyses. Finally, for each of the 156 enriched pathway-trait pairs, for each of the four gene networks, we constructed pathway+network annotations by annotating genes with high network connectivity to the input pathway. For each gene network, these pathway+network annotations were strongly significantly enriched for the corresponding traits. Once again, the enrichments were largely explained by the baseline-LD model. In conclusion, gene network connectivity is highly informative for disease architectures, but the information in gene networks may be subsumed by regulatory annotations, emphasizing the importance of accounting for known annotations.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Genes/genética , Doenças Genéticas Inatas/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Humanos , Anotação de Sequência Molecular , Fenótipo , Software
11.
Mol Syst Biol ; 16(8): e9584, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812710

RESUMO

Genetic circuits have many applications, from guiding living therapeutics to ordering process in a bioreactor, but to be useful they have to be genetically stable and not hinder the host. Encoding circuits in the genome reduces burden, but this decreases performance and can interfere with native transcription. We have designed genomic landing pads in Escherichia coli at high-expression sites, flanked by ultrastrong double terminators. DNA payloads >8 kb are targeted to the landing pads using phage integrases. One landing pad is dedicated to carrying a sensor array, and two are used to carry genetic circuits. NOT/NOR gates based on repressors are optimized for the genome and characterized in the landing pads. These data are used, in conjunction with design automation software (Cello 2.0), to design circuits that perform quantitatively as predicted. These circuits require fourfold less RNA polymerase than when carried on a plasmid and are stable for weeks in a recA+ strain without selection. This approach enables the design of synthetic regulatory networks to guide cells in environments or for applications where plasmid use is infeasible.


Assuntos
Escherichia coli/genética , Redes Reguladoras de Genes , Engenharia Genética/métodos , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Software , Biologia Sintética
12.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206382

RESUMO

Emerin is the inner nuclear membrane protein involved in maintaining the mechanical integrity of the nuclear membrane. Mutations in EMD encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD). Evidence is accumulating that emerin regulation of specific gene expression is associated with this disease, but the exact function of emerin has not been fully elucidated. Here, we show that emerin downregulates Signal transducer and activators of transcription 3 (STAT3) signaling, activated exclusively by Janus kinase (JAK). Deletion mutation experiments show that the lamin-binding domain of emerin is essential for the inhibition of STAT3 signaling. Emerin interacts directly and co-localizes with STAT3 in the nuclear membrane. Emerin knockdown induces STAT3 target genes Bcl2 and Survivin to increase cell survival signals and suppress hydrogen peroxide-induced cell death in HeLa cells. Specifically, downregulation of BAF or lamin A/C increases STAT3 signaling, suggesting that correct-localized emerin, by assembling with BAF and lamin A/C, acts as an intrinsic inhibitor against STAT3 signaling. In C2C12 cells, emerin knockdown induces STAT3 target gene, Pax7, and activated abnormal myoblast proliferation associated with muscle wasting in skeletal muscle homeostasis. Our results indicate that emerin downregulates STAT3 signaling by inducing retention of STAT3 and delaying STAT3 signaling in the nuclear membrane. This mechanism provides clues to the etiology of emerin-related muscular dystrophy and may be a new therapeutic target for treatment.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Células A549 , Núcleo Celular/metabolismo , Sobrevivência Celular , Regulação da Expressão Gênica , Humanos , Janus Quinases/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/etiologia , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Mutação , Ligação Proteica , Fator de Transcrição STAT3/genética , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299195

RESUMO

Betaine aldehyde dehydrogenase 1 (BADH1), a paralog of the fragrance gene BADH2, is known to be associated with salt stress through the accumulation of synthesized glycine betaine (GB), which is involved in the response to abiotic stresses. Despite the unclear association between BADH1 and salt stress, we observed the responses of eight phenotypic characteristics (germination percentage (GP), germination energy (GE), germination index (GI), mean germination time (MGT), germination rate (GR), shoot length (SL), root length (RL), and total dry weight (TDW)) to salt stress during the germination stage of 475 rice accessions to investigate their association with BADH1 haplotypes. We found a total of 116 SNPs and 77 InDels in the whole BADH1 gene region, representing 39 haplotypes. Twenty-nine haplotypes representing 27 mutated alleles (two InDels and 25 SNPs) were highly (p < 0.05) associated with salt stress, including the five SNPs that have been previously reported to be associated with salt tolerance. We observed three predominant haplotypes associated with salt tolerance, Hap_2, Hap_18, and Hap_23, which were Indica specific, indicating a comparatively high number of rice accessions among the associated haplotypes. Eight plant parameters (phenotypes) also showed clear responses to salt stress, and except for MGT (mean germination time), all were positively correlated with each other. Different signatures of domestication for BADH1 were detected in cultivated rice by identifying the highest and lowest Tajima's D values of two major cultivated ecotypes (Temperate Japonica and Indica). Our findings on these significant associations and BADH1 evolution to plant traits can be useful for future research development related to its gene expression.


Assuntos
Betaína-Aldeído Desidrogenase/metabolismo , Betaína/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Betaína-Aldeído Desidrogenase/genética , Genes de Plantas , Germinação , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico
14.
Mol Syst Biol ; 14(11): e8605, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482789

RESUMO

Controlling gene expression during a bioprocess enables real-time metabolic control, coordinated cellular responses, and staging order-of-operations. Achieving this with small molecule inducers is impractical at scale and dynamic circuits are difficult to design. Here, we show that the same set of sensors can be integrated by different combinatorial logic circuits to vary when genes are turned on and off during growth. Three Escherichia coli sensors that respond to the consumption of feedstock (glucose), dissolved oxygen, and by-product accumulation (acetate) are constructed and optimized. By integrating these sensors, logic circuits implement temporal control over an 18-h period. The circuit outputs are used to regulate endogenous enzymes at the transcriptional and post-translational level using CRISPRi and targeted proteolysis, respectively. As a demonstration, two circuits are designed to control acetate production by matching their dynamics to when endogenous genes are expressed (pta or poxB) and respond by turning off the corresponding gene. This work demonstrates how simple circuits can be implemented to enable customizable dynamic gene regulation.


Assuntos
Escherichia coli/metabolismo , Redes e Vias Metabólicas , Biologia de Sistemas/métodos , Acetatos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Oxigênio/metabolismo
15.
Mol Syst Biol ; 13(11): 952, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122925

RESUMO

Genetic circuits implement computational operations within a cell. Debugging them is difficult because their function is defined by multiple states (e.g., combinations of inputs) that vary in time. Here, we develop RNA-seq methods that enable the simultaneous measurement of: (i) the states of internal gates, (ii) part performance (promoters, insulators, terminators), and (iii) impact on host gene expression. This is applied to a three-input one-output circuit consisting of three sensors, five NOR/NOT gates, and 46 genetic parts. Transcription profiles are obtained for all eight combinations of inputs, from which biophysical models can extract part activities and the response functions of sensors and gates. Various unexpected failure modes are identified, including cryptic antisense promoters, terminator failure, and a sensor malfunction due to media-induced changes in host gene expression. This can guide the selection of new parts to fix these problems, which we demonstrate by using a bidirectional terminator to disrupt observed antisense transcription. This work introduces RNA-seq as a powerful method for circuit characterization and debugging that overcomes the limitations of fluorescent reporters and scales to large systems composed of many parts.


Assuntos
Escherichia coli/genética , Redes Reguladoras de Genes , RNA/genética , Biologia Sintética/métodos , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Biblioteca Gênica , Elementos Isolantes , Isopropiltiogalactosídeo/farmacologia , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regiões Terminadoras Genéticas , Transgenes
16.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322083

RESUMO

Salt toxicity is the major factor limiting crop productivity in saline soils. In this paper, 295 accessions including a heuristic core set (137 accessions) and 158 bred varieties were re-sequenced and ~1.65 million SNPs/indels were used to perform a genome-wide association study (GWAS) of salt-tolerance-related phenotypes in rice during the germination stage. A total of 12 associated peaks distributed on seven chromosomes using a compressed mixed linear model were detected. Determined by linkage disequilibrium (LD) blocks analysis, we finally obtained a total of 79 candidate genes. By detecting the highly associated variations located inside the genic region that overlapped with the results of LD block analysis, we characterized 17 genes that may contribute to salt tolerance during the seed germination stage. At the same time, we conducted a haplotype analysis of the genes with functional variations together with phenotypic correlation and orthologous sequence analyses. Among these genes, OsMADS31, which is a MADS-box family transcription factor, had a down-regulated expression under the salt condition and it was predicted to be involved in the salt tolerance at the rice germination stage. Our study revealed some novel candidate genes and their substantial natural variations in the rice genome at the germination stage. The GWAS in rice at the germination stage would provide important resources for molecular breeding and functional analysis of the salt tolerance during rice germination.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Germinação , Proteínas de Domínio MADS/genética , Oryza/crescimento & desenvolvimento , Tolerância ao Sal , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
Mol Genet Genomics ; 292(6): 1391-1403, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28821952

RESUMO

Salt is the major factor limiting crop productivity in saline soils and is controlled by various genes. The development of salt-tolerant rice through molecular breeding methods is important to meet the needs of rice breeding. We used 295 accessions to perform a genome-wide association study (GWAS) of salt tolerance-related phenotypes in rice at the seedling stage and obtained 93 candidate genes with high association peaks across six phenotypes. We constructed a protein interaction network using the candidate genes identified here, and 33 genes were associated. Based on the expression patterns, we found that most of these genes showed a different expression level under control and salt stress conditions. In addition, haplotype network and sequence analysis of one 'key' gene, a transcription factor (Os12g0176700) encoding a SWIRM domain-containing protein, in the interaction network was investigated to explore its possible role in the network. Our study revealed candidate salt tolerance-related genes in rice at the seedling stage, and demonstrated the feasibility of using GWAS to identify genetic architecture underlying salt tolerance. The data generated here may provide resources for molecular breeding and functional analysis of salt tolerance in rice seedlings.


Assuntos
Genes de Plantas , Estudo de Associação Genômica Ampla , Oryza/genética , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Haplótipos , Polimorfismo de Nucleotídeo Único
19.
Plant Biotechnol J ; 15(3): 357-366, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27589078

RESUMO

Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population-selective or -adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry inference study clearly showed that the genetic distance of Korean weedy rice was far from the wild rice and near with cultivated rice. Furthermore, 537 genes showed evidence of recent positive or divergent selection, consistent with some adaptive traits. This study indicates that Korean weedy rice originated from hybridization of modern indica/indica or japonica/japonica rather than wild rice. Moreover, weedy rice is not only a notorious weed in rice fields, but also contains many untapped valuable traits or haplotypes that may be a useful genetic resource for improving cultivated rice.


Assuntos
Metagenômica/métodos , Oryza/genética , DNA de Plantas/genética , Genoma de Planta/genética , Hibridização Genética , Filogenia
20.
BMC Genomics ; 17: 663, 2016 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-27544770

RESUMO

BACKGROUND: Starch and protein are two major components of polished rice, and the amylose and protein contents affect eating and cooking qualities (ECQs). In the present study, genome-wide association study with high-quality re-sequencing data was performed for 10 ECQs in a panel of 227 non-glutinous rice accessions and four derived panels. RESULTS: Population structure accounted for high phenotypic variation in three routine panels and had minor effects on subspecies-based panels. Using the mixed linear model method based on the P + K model, we detected 29, 24, 16, 17, and 29 loci that were significant for ECQ parameters in each of the five panels. Some of these loci were close to starch synthesis-related genes. Two quantitative trait loci (QTLs) (chr.9: 15417525 ~ 15474876; 17538294 ~ 18443016) for several starch paste viscosity properties detected in four panels were close to the isoamylase 3 gene, one QTL (chr.1: 30627943 ~ 31668474) for consistency detected in three panels was close to the starch synthase IV-1 gene. The QTL (chr.7: 1118122 ~ 1967247) for breakdown (BD), detected in the whole panel and japonica panel, and one QTL (chr.7: 25312126 ~ 26540950) for BD and setback (SB), detected in the whole panel and indica panel, may be specific gene alleles in japonica or indica panels. One previously detected QTL (chr.11: 22240707 ~ 22563596) for protein content and one new QTL (chr.5: 7756614 ~ 8042699) for many ECQ traits detected in more than two panels, may represent valuable targets for future cloning of the underlying genes. CONCLUSIONS: This study detected minor-effect QTLs affecting ECQs, and may increase our understanding of the genetic differences regulating the formation of ECQ between indica and japonica varieties.


Assuntos
Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Oryza/classificação , Locos de Características Quantitativas , Amilose/metabolismo , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA