Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Discov ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819218

RESUMO

Clonal hematopoiesis (CH) is a common premalignant state in the blood and confers an increased risk of blood cancers and all-cause mortality. Identification of therapeutic targets in CH has been hindered by the lack of an ex vivo platform amenable for studying primary hematopoietic stem and progenitor cells (HSPCs). Here, we utilize an ex vivo co-culture system of HSPCs with bone marrow endothelial cells to perform CRISPR/Cas9 screens in mutant HSPCs. Our data reveal that loss of the histone demethylase family members Kdm3b and Jmjd1c specifically reduces the fitness of Idh2- and Tet2-mutant HSPCs. Kdm3b loss in mutant cells leads to decreased expression of critical cytokine receptors including Mpl, rendering mutant HSPCs preferentially susceptible to inhibition of downstream JAK2 signaling. Our study nominates an epigenetic regulator and an epigenetically regulated receptor signaling pathway as genotype-specific therapeutic targets and provides a scalable platform to identify genetic dependencies in mutant HSPCs.

2.
Cancer Discov ; 14(5): 737-751, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230747

RESUMO

Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo. SIGNIFICANCE: Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Transdução de Sinais
3.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426374

RESUMO

Targeted therapies have come to play an increasingly important role in cancer therapy over the past two decades. This success has been made possible in large part by technological advances in sequencing, which have greatly advanced our understanding of the mutational landscape of human cancer and the genetic drivers present in individual tumors. We are rapidly discovering a growing number of mutations that occur in targetable pathways, and thus tumor genetic testing has become an important component in the choice of appropriate therapies. Targeted therapy has dramatically transformed treatment outcomes and disease prognosis in some settings, whereas in other oncologic contexts, targeted approaches have yet to demonstrate considerable clinical efficacy. In this Review, we summarize the current knowledge of targetable mutations that occur in a range of cancers, including hematologic malignancies and solid tumors such as non-small cell lung cancer and breast cancer. We outline seminal examples of druggable mutations and targeting modalities and address the clinical and research challenges that must be overcome to maximize therapeutic benefit.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Humanos , Neoplasias Pulmonares/genética , Mutação , Prognóstico
4.
Cell Rep ; 30(10): 3280-3295.e6, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160537

RESUMO

Genome editing technologies have transformed our ability to engineer desired genomic changes within living systems. However, detecting precise genomic modifications often requires sophisticated, expensive, and time-consuming experimental approaches. Here, we describe DTECT (Dinucleotide signaTurE CapTure), a rapid and versatile detection method that relies on the capture of targeted dinucleotide signatures resulting from the digestion of genomic DNA amplicons by the type IIS restriction enzyme AcuI. DTECT enables the accurate quantification of marker-free precision genome editing events introduced by CRISPR-dependent homology-directed repair, base editing, or prime editing in various biological systems, such as mammalian cell lines, organoids, and tissues. Furthermore, DTECT allows the identification of oncogenic mutations in cancer mouse models, patient-derived xenografts, and human cancer patient samples. The ease, speed, and cost efficiency by which DTECT identifies genomic signatures should facilitate the generation of marker-free cellular and animal models of human disease and expedite the detection of human pathogenic variants.


Assuntos
Edição de Genes , Variação Genética , Genômica , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Sequência de Bases , DNA/genética , Modelos Animais de Doenças , Loci Gênicos , Marcadores Genéticos , Genótipo , Células HEK293 , Humanos , Camundongos , Mutação/genética , Células NIH 3T3 , Neoplasias/genética , Nucleotídeos/genética , Oncogenes , Reparo de DNA por Recombinação/genética , Mapeamento por Restrição
5.
Cancer Discov ; 10(11): 1742-1757, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32669286

RESUMO

We investigated the role of PRMT5 in myeloproliferative neoplasm (MPN) pathogenesis and aimed to elucidate key PRMT5 targets contributing to MPN maintenance. PRMT5 is overexpressed in primary MPN cells, and PRMT5 inhibition potently reduced MPN cell proliferation ex vivo. PRMT5 inhibition was efficacious at reversing elevated hematocrit, leukocytosis, and splenomegaly in a model of JAK2V617F+ polycythemia vera and leukocyte and platelet counts, hepatosplenomegaly, and fibrosis in the MPLW515L model of myelofibrosis. Dual targeting of JAK and PRMT5 was superior to JAK or PRMT5 inhibitor monotherapy, further decreasing elevated counts and extramedullary hematopoiesis in vivo. PRMT5 inhibition reduced expression of E2F targets and altered the methylation status of E2F1 leading to attenuated DNA damage repair, cell-cycle arrest, and increased apoptosis. Our data link PRMT5 to E2F1 regulatory function and MPN cell survival and provide a strong mechanistic rationale for clinical trials of PRMT5 inhibitors in MPN. SIGNIFICANCE: Expression of PRMT5 and E2F targets is increased in JAK2V617F+ MPN. Pharmacologic inhibition of PRMT5 alters the methylation status of E2F1 and shows efficacy in JAK2V617F/MPLW515L MPN models and primary samples. PRMT5 represents a potential novel therapeutic target for MPN, which is now being clinically evaluated.This article is highlighted in the In This Issue feature, p. 1611.


Assuntos
Fator de Transcrição E2F1/metabolismo , Redes Reguladoras de Genes/genética , Janus Quinase 2/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Humanos , Metilação , Mutação , Proteína-Arginina N-Metiltransferases/metabolismo
6.
Brain Res ; 1008(2): 186-92, 2004 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-15145755

RESUMO

Visceral pain originates from visceral organs in response to a noxious stimulus which, if prolonged, may lead to chronic changes in the neural network mediating visceral nociception. For instance, colon inflammation enhances the responses of neurons in the thalamus to colorectal distension (CRD), whereas lesion in the dorsal column (DC) reverses this neuronal sensitization, suggesting that the thalamus and the DC play major roles in chronic visceral pain. In this study, we used adult rats sensitized with neonatal painful colon irritation to reveal the contribution of the thalamus and the DC to neuronal hyperexcitability in a model of chronic visceral pain. We recorded the responses of lumbosacral neurons to CRD in control rats and in rats with colon irritation following stimulation or inactivation of the thalamus, and after DC lesion. Our results show that, first, neuronal responses to CRD decreased following thalamic stimulation in control rats, whereas, in rats with colon irritation, responses either decreased or increased; second, DC lesion attenuated or enhanced these effects in the positively or in the negatively modulated group of neurons, respectively; third, lidocaine injection in the thalamus reduced the responses to CRD in some of the neurons recorded in rats with colon irritation, but had no effect on those in control rats. Therefore, it is reasonable to speculate that plasticity in rats with colon irritation that may underlie chronic pain is sustained by feedback loops ascending in the DC and engaging the thalamus.


Assuntos
Animais Recém-Nascidos/fisiologia , Colite/fisiopatologia , Dor/fisiopatologia , Tálamo/fisiologia , Anestésicos Locais/administração & dosagem , Anestésicos Locais/farmacologia , Animais , Cateterismo , Eletrofisiologia , Lidocaína/administração & dosagem , Lidocaína/farmacologia , Masculino , Mecanorreceptores/fisiologia , Microinjeções , Plasticidade Neuronal/fisiologia , Estimulação Física , Células do Corno Posterior/fisiologia , Ratos , Ratos Sprague-Dawley , Reto/fisiologia , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA