Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Nat Methods ; 20(12): 2034-2047, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38052989

RESUMO

Ventral midbrain dopaminergic neurons project to the striatum as well as the cortex and are involved in movement control and reward-related cognition. In Parkinson's disease, nigrostriatal midbrain dopaminergic neurons degenerate and cause typical Parkinson's disease motor-related impairments, while the dysfunction of mesocorticolimbic midbrain dopaminergic neurons is implicated in addiction and neuropsychiatric disorders. Study of the development and selective neurodegeneration of the human dopaminergic system, however, has been limited due to the lack of an appropriate model and access to human material. Here, we have developed a human in vitro model that recapitulates key aspects of dopaminergic innervation of the striatum and cortex. These spatially arranged ventral midbrain-striatum-cortical organoids (MISCOs) can be used to study dopaminergic neuron maturation, innervation and function with implications for cell therapy and addiction research. We detail protocols for growing ventral midbrain, striatal and cortical organoids and describe how they fuse in a linear manner when placed in custom embedding molds. We report the formation of functional long-range dopaminergic connections to striatal and cortical tissues in MISCOs, and show that injected, ventral midbrain-patterned progenitors can mature and innervate the tissue. Using these assembloids, we examine dopaminergic circuit perturbations and show that chronic cocaine treatment causes long-lasting morphological, functional and transcriptional changes that persist upon drug withdrawal. Thus, our method opens new avenues to investigate human dopaminergic cell transplantation and circuitry reconstruction as well as the effect of drugs on the human dopaminergic system.


Assuntos
Doença de Parkinson , Humanos , Mesencéfalo/anatomia & histologia , Mesencéfalo/fisiologia , Dopamina , Neurônios Dopaminérgicos , Corpo Estriado
2.
Bioessays ; : e2400118, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058892

RESUMO

Parkinson's disease (PD) is characterized by the loss of the dopaminergic nigrostriatal pathway which has led to the successful development of drug therapies that replace or stimulate this network pharmacologically. Although these drugs work well in the early stages of the disease, over time they produce side effects along with less consistent clinical benefits to the person with Parkinson's (PwP). As such there has been much interest in repairing this pathway using transplants of dopamine neurons. This work which began 50 years ago this September is still ongoing and has now moved to first in human trials using human pluripotent stem cell-derived dopaminergic neurons. The results of these trials are eagerly awaited although proof of principle data has already come from trials using human fetal midbrain dopamine cell transplants. This data has shown that developing dopamine cells when transplanted in the brain of a PwP can survive long term with clinical benefits lasting decades and with restoration of normal dopaminergic innervation in the grafted striatum. In this article, we discuss the history of this field and how this has now led us to the recent stem cell trials for PwP.

3.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305490

RESUMO

Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells for application in disease modeling, diagnostics, drug screening and cell-based therapies for Parkinson's disease. An increased understanding of the timing and molecular mechanisms that promote the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from pluripotent stem cells. Here, we use droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11 weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach reveals that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence, they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons that can be used to guide stem cell-based therapies and disease modeling approaches in Parkinson's disease.


Assuntos
Doença de Parkinson , Células-Tronco Pluripotentes , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Neurônios Dopaminérgicos , Mesencéfalo , Diferenciação Celular/genética
4.
Nat Rev Neurosci ; 21(2): 103-115, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907406

RESUMO

Cell-replacement therapies have long been an attractive prospect for treating Parkinson disease. However, the outcomes of fetal tissue-derived cell transplants in individuals with Parkinson disease have been variable, in part owing to the limitations of fetal tissue as a cell source, relating to its availability and the lack of possibility for standardization and to variation in methods. Advances in developmental and stem cell biology have allowed the development of cell-replacement therapies that comprise dopamine neurons derived from human pluripotent stem cells, which have several advantages over fetal cell-derived therapies. In this Review, we critically assess the potential trajectory of this line of translational and clinical research and address its possibilities and current limitations and the broader range of Parkinson disease features that dopamine cell replacement based on generating neurons from human pluripotent stem cells could effectively treat in the future.


Assuntos
Encéfalo/fisiopatologia , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Neurônios Dopaminérgicos/fisiologia , Humanos , Células-Tronco Pluripotentes/fisiologia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco/tendências , Pesquisa Translacional Biomédica
5.
Nature ; 557(7705): 329-334, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769670

RESUMO

The ability to repair or promote regeneration within the adult human brain has been envisioned for decades. Until recently, such efforts mainly involved delivery of growth factors and cell transplants designed to rescue or replace a specific population of neurons, and the results have largely been disappointing. New approaches using stem-cell-derived cell products and direct cell reprogramming have opened up the possibility of reconstructing neural circuits and achieving better repair. In this Review we briefly summarize the history of neural repair and then discuss these new therapeutic approaches, especially with respect to chronic neurodegenerative disorders.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Reprogramação Celular/fisiologia , Regeneração Nervosa/fisiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Medicina Regenerativa/métodos , Animais , Encéfalo/patologia , Transplante de Tecido Fetal , Humanos , Doenças Neurodegenerativas/fisiopatologia , Transplante de Células-Tronco
6.
Brain ; 145(9): 3035-3057, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34936701

RESUMO

Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Adulto , Autofagia/fisiologia , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Neurônios
7.
Nature ; 548(7669): 592-596, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28858313

RESUMO

Induced pluripotent stem cells (iPS cells) are a promising source for a cell-based therapy to treat Parkinson's disease (PD), in which midbrain dopaminergic neurons progressively degenerate. However, long-term analysis of human iPS cell-derived dopaminergic neurons in primate PD models has never been performed to our knowledge. Here we show that human iPS cell-derived dopaminergic progenitor cells survived and functioned as midbrain dopaminergic neurons in a primate model of PD (Macaca fascicularis) treated with the neurotoxin MPTP. Score-based and video-recording analyses revealed an increase in spontaneous movement of the monkeys after transplantation. Histological studies showed that the mature dopaminergic neurons extended dense neurites into the host striatum; this effect was consistent regardless of whether the cells were derived from patients with PD or from healthy individuals. Cells sorted by the floor plate marker CORIN did not form any tumours in the brains for at least two years. Finally, magnetic resonance imaging and positron emission tomography were used to monitor the survival, expansion and function of the grafted cells as well as the immune response in the host brain. Thus, this preclinical study using a primate model indicates that human iPS cell-derived dopaminergic progenitors are clinically applicable for the treatment of patients with PD.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Medicina Regenerativa/métodos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proliferação de Células , Sobrevivência Celular , Neurônios Dopaminérgicos/imunologia , Humanos , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/citologia , Movimento , Neostriado/citologia , Neuritos , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Tomografia por Emissão de Pósitrons , Serina Endopeptidases/análise , Serina Endopeptidases/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(26): 15209-15220, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541058

RESUMO

Preclinical assessment of the therapeutic potential of dopamine (DA) neuron replacement in Parkinson's disease (PD) has primarily been performed in the 6-hydroxydopamine toxin model. While this is a good model to assess graft function, it does not reflect the pathological features or progressive nature of the disease. In this study, we establish a humanized transplantation model of PD that better recapitulates the main disease features, obtained by coinjection of preformed human α-synuclein (α-syn) fibrils and adeno-associated virus (AAV) expressing human wild-type α-syn unilaterally into the rat substantia nigra (SN). This model gives rise to DA neuron dysfunction and progressive loss of DA neurons from the SN and terminals in the striatum, accompanied by extensive α-syn pathology and a prominent inflammatory response, making it an interesting and relevant model in which to examine long-term function and integrity of transplanted neurons in a PD-like brain. We transplanted DA neurons derived from human embryonic stem cells (hESCs) into the striatum and assessed their survival, growth, and function over 6 to 18 wk. We show that the transplanted cells, even in the presence of ongoing pathology, are capable of innervating the DA-depleted striatum. However, on closer examination of the grafts, we found evidence of α-syn pathology in the form of inclusions of phosphorylated α-syn in a small fraction of the grafted DA neurons, indicating host-to-graft transfer of α-syn pathology, a phenomenon that has previously been observed in PD patients receiving fetal tissue grafts but has not been possible to demonstrate and study in toxin-based animal models.


Assuntos
Células-Tronco Embrionárias/fisiologia , Transplante de Células-Tronco , Sinucleinopatias , alfa-Sinucleína/metabolismo , Animais , Sobrevivência Celular , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Feminino , Humanos , Inflamação , Degeneração Neural , Ratos , Ratos Sprague-Dawley , Substância Negra/citologia
9.
Proc Natl Acad Sci U S A ; 117(16): 9094-9100, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253308

RESUMO

Stem cell transplantation can improve behavioral recovery after stroke in animal models but whether stem cell-derived neurons become functionally integrated into stroke-injured brain circuitry is poorly understood. Here we show that intracortically grafted human induced pluripotent stem (iPS) cell-derived cortical neurons send widespread axonal projections to both hemispheres of rats with ischemic lesions in the cerebral cortex. Using rabies virus-based transsynaptic tracing, we find that at 6 mo after transplantation, host neurons in the contralateral somatosensory cortex receive monosynaptic inputs from grafted neurons. Immunoelectron microscopy demonstrates myelination of the graft-derived axons in the corpus callosum and that their terminals form excitatory, glutamatergic synapses on host cortical neurons. We show that the stroke-induced asymmetry in a sensorimotor (cylinder) test is reversed by transplantation. Light-induced inhibition of halorhodopsin-expressing, grafted neurons does not recreate the impairment, indicating that its reversal is not due to neuronal activity in the graft. However, we find bilateral decrease of motor performance in the cylinder test after light-induced inhibition of either grafted or endogenous halorhodopsin-expressing cortical neurons, located in the same area, and after inhibition of endogenous halorhodopsin-expressing cortical neurons by exposure of their axons to light on the contralateral side. Our data indicate that activity in the grafted neurons, probably mediated through transcallosal connections to the contralateral hemisphere, is involved in maintaining normal motor function. This is an example of functional integration of efferent projections from grafted neurons into the stroke-affected brain's neural circuitry, which raises the possibility that such repair might be achievable also in humans affected by stroke.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto da Artéria Cerebral Média/terapia , Atividade Motora/fisiologia , Neurônios/transplante , Córtex Somatossensorial/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/etiologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neurônios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Ratos , Recuperação de Função Fisiológica , Córtex Somatossensorial/citologia , Córtex Somatossensorial/patologia
10.
Proc Natl Acad Sci U S A ; 116(52): 27053-27062, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818949

RESUMO

Adeno-associated virus (AAV) capsid modification enables the generation of recombinant vectors with tailored properties and tropism. Most approaches to date depend on random screening, enrichment, and serendipity. The approach explored here, called BRAVE (barcoded rational AAV vector evolution), enables efficient selection of engineered capsid structures on a large scale using only a single screening round in vivo. The approach stands in contrast to previous methods that require multiple generations of enrichment. With the BRAVE approach, each virus particle displays a peptide, derived from a protein, of known function on the AAV capsid surface, and a unique molecular barcode in the packaged genome. The sequencing of RNA-expressed barcodes from a single-generation in vivo screen allows the mapping of putative binding sequences from hundreds of proteins simultaneously. Using the BRAVE approach and hidden Markov model-based clustering, we present 25 synthetic capsid variants with refined properties, such as retrograde axonal transport in specific subtypes of neurons, as shown for both rodent and human dopaminergic neurons.

11.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311261

RESUMO

Treating neurodegenerative diseases with cell transplantation has been within reach since the first pioneering clinical trials in which dopamine neuron progenitors from the fetal brain were transplanted to individuals with Parkinson's disease. However, the use of fetal tissue is problematic in terms of low availability and high variability, and it is also associated with ethical concerns that vary between countries. For decades, the field has therefore investigated new scalable source of therapeutic cells from stem cells or via reprogramming. Now it is possible to generate authentic midbrain dopaminergic neurons from pluripotent stem cells and clinical trials using such cells are rapidly approaching.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Neurônios Dopaminérgicos , Células-Tronco Neurais , Doença de Parkinson , Transplante de Células-Tronco , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/terapia
12.
Stem Cells ; 38(6): 716-726, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32101353

RESUMO

Fetal neural progenitor grafts have been evaluated in preclinical animal models of spinal cord injury and Parkinson's disease for decades, but the initial reliance on primary tissue as a cell source limited the scale of their clinical translatability. With the development of robust methods to differentiate human pluripotent stem cells to specific neural subtypes, cell replacement therapy holds renewed promise to treat a variety of neurodegenerative diseases and injuries at scale. As these cell sources are evaluated in preclinical models, new transsynaptic tracing methods are making it possible to study the connectivity between host and graft neurons with greater speed and detail than was previously possible. To date, these studies have revealed that widespread, long-lasting, and anatomically appropriate synaptic contacts are established between host and graft neurons, as well as new aspects of host-graft connectivity which may be relevant to clinical cell replacement therapy. It is not yet clear, however, whether the synaptic connectivity between graft and host neurons is as cell-type specific as it is in the endogenous nervous system, or whether that connectivity is responsible for the functional efficacy of cell replacement therapy. Here, we review evidence suggesting that the new contacts established between host and graft neurons may indeed be cell-type specific, and how transsynaptic tracing can be used in the future to further elucidate the mechanisms of graft-mediated functional recovery in spinal cord injury and Parkinson's disease.


Assuntos
Células-Tronco Neurais/transplante , Doença de Parkinson/terapia , Traumatismos da Medula Espinal/terapia , Humanos
14.
Eur J Neurosci ; 49(4): 463-471, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30099795

RESUMO

This review describes the history, development, and evolution of cell-based replacement therapy for Parkinson's disease (PD), from the first pioneering trials with fetal ventral midbrain progenitors to future trials using stem cells as well as reprogrammed cells. In the spirit of Tom Isaacs, the review takes parallels to the storyline of Star Wars, including the temptations from the dark side and the continuous fight for the light side of the Force. It is subdivided into headings based on the original movies, spanning from A New Hope to the Last Jedi.


Assuntos
Células-Tronco Neurais/transplante , Doença de Parkinson/cirurgia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco , Animais , História do Século XX , História do Século XXI , Humanos , Doença de Parkinson/história , Transplante de Células-Tronco/história
15.
Development ; 142(18): 3166-77, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26395143

RESUMO

MicroRNAs (miRNAs) have been implicated in regulating multiple processes during brain development in various species. However, the function of miRNAs in human brain development remains largely unexplored. Here, we provide a comprehensive analysis of miRNA expression of regionalized neural progenitor cells derived from human embryonic stem cells and human foetal brain. We found miR-92b-3p and miR-130b-5p to be specifically associated with neural progenitors and several miRNAs that display both age-specific and region-specific expression patterns. Among these miRNAs, we identified miR-10 to be specifically expressed in the human hindbrain and spinal cord, while being absent from rostral regions. We found that miR-10 regulates a large number of genes enriched for functions including transcription, actin cytoskeleton and ephrin receptor signalling. When overexpressed, miR-10 influences caudalization of human neural progenitor cells. Together, these data confirm a role for miRNAs in establishing different human neural progenitor populations. This dataset also provides a comprehensive resource for future studies investigating the functional role of different miRNAs in human brain development.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Análise de Variância , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem Celular , Cromossomos Artificiais Bacterianos , Primers do DNA/genética , Citometria de Fluxo , Genes Reporter/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Humanos , Lentivirus , MicroRNAs/genética , Células-Tronco Neurais/fisiologia , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Mapeamento por Restrição , Fatores de Transcrição SOXB1/genética
16.
Brain ; 140(3): 692-706, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115364

RESUMO

Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex.


Assuntos
Lesões Encefálicas/cirurgia , Potenciais Somatossensoriais Evocados/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Sinapses/fisiologia , Potenciais de Ação , Vias Aferentes/fisiologia , Animais , Encéfalo/citologia , Encéfalo/ultraestrutura , Lesões Encefálicas/etiologia , Linhagem Celular Transformada , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Modelos Animais de Doenças , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Neurônios/fisiologia , Neurônios/ultraestrutura , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Nus , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Sinapses/ultraestrutura , Núcleos Ventrais do Tálamo/citologia
17.
Proc Natl Acad Sci U S A ; 110(17): 7038-43, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23530235

RESUMO

Cellular reprogramming is a new and rapidly emerging field in which somatic cells can be turned into pluripotent stem cells or other somatic cell types simply by the expression of specific combinations of genes. By viral expression of neural fate determinants, it is possible to directly reprogram mouse and human fibroblasts into functional neurons, also known as induced neurons. The resulting cells are nonproliferating and present an alternative to induced pluripotent stem cells for obtaining patient- and disease-specific neurons to be used for disease modeling and for development of cell therapy. In addition, because the cells do not pass a stem cell intermediate, direct neural conversion has the potential to be performed in vivo. In this study, we show that transplanted human fibroblasts and human astrocytes, which are engineered to express inducible forms of neural reprogramming genes, convert into neurons when reprogramming genes are activated after transplantation. Using a transgenic mouse model to specifically direct expression of reprogramming genes to parenchymal astrocytes residing in the striatum, we also show that endogenous mouse astrocytes can be directly converted into neural nuclei (NeuN)-expressing neurons in situ. Taken together, our data provide proof of principle that direct neural conversion can take place in the adult rodent brain when using transplanted human cells or endogenous mouse cells as a starting cell for neural conversion.


Assuntos
Astrócitos/transplante , Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Fibroblastos/transplante , Neurônios/citologia , Animais , Astrócitos/citologia , Reprogramação Celular/efeitos dos fármacos , Corpo Estriado/citologia , Doxiciclina/farmacologia , Fibroblastos/citologia , Citometria de Fluxo , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Humanos , Lentivirus , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
18.
Acta Neuropathol ; 127(2): 283-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24292008

RESUMO

Frontotemporal lobar degeneration (FTLD) consists of a group of neurodegenerative diseases characterized by behavioural and executive impairment, language disorders and motor dysfunction. About 20-30% of cases are inherited in a dominant manner. Mutations in the microtubule-associated protein tau gene (MAPT) cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17T). Here we report a novel MAPT mutation (K298E) in exon 10 in a patient with FTDP-17T. Neuropathological studies of post-mortem brain showed widespread neuronal loss and gliosis and abundant deposition of hyperphosphorylated tau in neurons and glia. Molecular studies demonstrated that the K298E mutation affects both protein function and alternative mRNA splicing. Fibroblasts from a skin biopsy of the proband taken at post-mortem were directly induced into neurons (iNs) and expressed both 3-repeat and 4-repeat tau isoforms. As well as contributing new knowledge on MAPT mutations in FTDP-17T, this is the first example of the successful generation of iNs from skin cells retrieved post-mortem.


Assuntos
Encéfalo/patologia , Éxons/genética , Mutação/genética , Neurônios/metabolismo , Tauopatias/genética , Proteínas tau/metabolismo , Idoso , Autopsia , Biópsia , Cromossomos Humanos Par 17/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/mortalidade , Humanos , Neurônios/patologia , Proteínas tau/genética
19.
Proc Natl Acad Sci U S A ; 108(25): 10343-8, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646515

RESUMO

Recent reports demonstrate that somatic mouse cells can be directly converted to other mature cell types by using combined expression of defined factors. Here we show that the same strategy can be applied to human embryonic and postnatal fibroblasts. By overexpression of the transcription factors Ascl1, Brn2, and Myt1l, human fibroblasts were efficiently converted to functional neurons. We also demonstrate that the converted neurons can be directed toward distinct functional neurotransmitter phenotypes when the appropriate transcriptional cues are provided together with the three conversion factors. By combining expression of the three conversion factors with expression of two genes involved in dopamine neuron generation, Lmx1a and FoxA2, we could direct the phenotype of the converted cells toward dopaminergic neurons. Such subtype-specific induced neurons derived from human somatic cells could be valuable for disease modeling and cell replacement therapy.


Assuntos
Transdiferenciação Celular/fisiologia , Dopamina/metabolismo , Fibroblastos/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Neurônios/citologia , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Handb Clin Neurol ; 205: 3-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39341661

RESUMO

Regenerative medicine is an emerging and rapidly evolving field of research and therapeutics aimed to restore, maintain, and improve body functions. In the adult mammalian brain, very few neurons, if any, are generated after disease onset or an injury, and its ability to self-repair is therefore limited. Replacing neurons that are lost during neurodegenerative diseases or due to injury therefore represents one of the major challenges to modern medicine. In this introductory chapter, we describe the basic biology of stem cells and outline how stem cells and cell reprogramming can be utilized to create new neurons for therapeutic purposes that are discussed in detail in other chapters in this handbook.


Assuntos
Doenças do Sistema Nervoso , Transplante de Células-Tronco , Células-Tronco , Humanos , Doenças do Sistema Nervoso/terapia , Animais , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA