RESUMO
Synthesis of high quality colloidal Cerium(III) doped yttrium aluminum garnet (Y3 Al5 O12 :Ce3+ , "YAG:Ce") nanoparticles (NPs) meeting simultaneously both ultra-small size and high photoluminescence (PL) performance is challenging, as generally a particle size/PL trade-off has been observed for this type of nanomaterials. The glycothermal route is capable to yield ultra-fine crystalline colloidal YAG:Ce nanoparticles with a particle size as small as 10 nm but with quantum yield (QY) no more than 20%. In this paper, the first ultra-small YPO4 -YAG:Ce nanocomposite phosphor particles having an exceptional QY-to-size performance with an QY up to 53% while maintaining the particle size ≈10 nm is reported. The NPs are produced via a phosphoric acid- and extra yttrium acetate-assisted glycothermal synthesis route. Localization of phosphate and extra yttrium entities with respect to cerium centers in the YAG host has been determined by fine structural analysis techniques such as X-ray diffration (XRD), solid state nuclear magnetic resonance (NMR), and high resolution scanning transmission electron microscopy (HR-STEM), and shows distinct YPO4 and YAG phases. Finally, a correlation between the additive-induced physico-chemical environment change around cerium centers and the increasing PL performance has been suggested based on electron paramagnetic resonance (EPR), X-ray photoelectron spectrometry (XPS) data, and crystallographic simulation studies.
RESUMO
Two-photon lithography is a potential route to produce high-resolution 3D ceramics. However, the large shrinkage due to the elimination of an important organic counterpart of the printed material during debinding/sintering remains a lock to further development of this technology. To limit this phenomenon, an original approach based on a composite resin incorporating 45 wt% ultrasmall (5 nm) zirconia stabilized nanoparticles into the zirconium acrylate precursor is proposed to process 3D zirconia microlattices and nanostructured optical surfaces. Interestingly, the nanoparticles are used both as seeds allowing control of the crystallographic phase formed during the calcination process and as structural stabilizing agent preventing important shrinkage of the printed ceramic. After 3D photolithography and pyrolysis, the weight and volume loss of the microstructures are drastically reduced as compared to similar systems processed with the reference resin without nanoparticles, and stable 3D microstructures of cubic zirconia are obtained with high spatial resolution. In the case of a patterned surface, the refractive index of 2.1 leads to a diffraction efficiency large enough to obtain microfocusing with linewidths of 0.1 µm, and the demonstration of a microlens array with a period as small as 0.8 µm.
Assuntos
Nanopartículas , Nanoestruturas , Cerâmica , Cristalização , Teste de Materiais , Impressão Tridimensional , Pirólise , Propriedades de Superfície , ZircônioRESUMO
The design of high-performance energy-converting materials is an essential step for the development of sensors, but the production of the bulk materials currently used remains costly and difficult. Therefore, a different approach based on the self-assembly of nanoparticles has been explored. We report on the preparation by solvothermal synthesis of highly crystalline CeF3 nanodiscs. Their surface modification by bisphosphonate ligands led to stable, highly concentrated, colloidal suspensions in water. Despite the low aspect ratio of the nanodiscs (â¼6), a liquid-crystalline nematic phase spontaneously appeared in these colloidal suspensions. Thanks to the paramagnetic character of the nanodiscs, the nematic phase was easily aligned by a weak (0.5 T) magnetic field, which provides a simple and convenient way of orienting all of the nanodiscs in suspension in the same direction. Moreover, the more dilute, isotropic, suspensions displayed strong (electric and magnetic) field-induced orientation of the nanodiscs (Kerr and Cotton-Mouton effects), with fast enough response times to make them suitable for use in electro-optic devices. Furthermore, an emission study showed a direct relation between the luminescence intensity and magnetic-field-induced orientation of the colloids. Finally, with their fast radiative recombination decay rates, the nanodiscs show luminescence properties that compare quite favorably with those of bulk CeF3. Therefore, these CeF3 nanodiscs are very promising building blocks for the development and processing of photosensitive materials for sensor applications.
RESUMO
In this work, we demonstrate the feasibility of gold bipyramidal-shaped nanoparticles (AuBPs) to be used as active plasmonic nanoplatforms for the detection of the biotin-streptavidin interaction in aqueous solution via both Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering (LSPR/SERS). Our proof of concept exploits the precise attachment of the recognition element at the tips of AuBPs, where the electromagnetic field is stronger, which is beneficial to the surface sensitivity of longitudinal LSPR on the local refractive index and to the electromagnetic enhancement of SERS activity, too. Indeed, successive red shifts of the longitudinal LSPR associated with increased local refractive index reveal the attachment of para-aminothiophenol (p-ATP) chemically labeled Biotin to the Au surface and the specific capture of the target protein by biotin-functionalized AuBPs. Finite-Difference Time-Domain simulations based on the reconstructed index of refraction confirm LSPR measurements. However, the molecular identification of the biotin-streptavidin interaction remains elusive by LSPR investigation alone. Remarkably, we succeeded to complement the LSPR detection with reliable SERS measurements which permitted to (a) certify the molecular identification of biotin-streptavidin interaction and (b) extend the limit of detection of streptavidin in solution toward 10-12 M. Finally, to further probe the possibility to implement the AuBPs as dual LSPR-SERS based immunoassays in solution for real clinical diagnostics, we additionally investigated the AuBP's performance to transduce the specific antihuman IgG- human IgG binding event, providing thus a reference design for building unique plasmonic immunoassays for dual-optical detection of target proteins in aqueous solution.
Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Imunoensaio/instrumentação , Imunoglobulina G/análise , Análise Espectral Raman/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Biotina/química , Humanos , Estreptavidina/químicaRESUMO
WO3 nanorods and wires were obtained via hydrothermal synthesis using sodium tungstate as a precursor and either oxalic acid, citric acid, or poly(methacrylic acid) as a stabilizing agent. Transmission electron microscopy images showed that the organic acids with different numbers of carboxylic groups per molecule influence the final sizes and stacking nanostructures of WO3 wires. Three-dimensional electron diffraction tomography of a single nanocrystal revealed a hexagonal WO3 structure with preferential growth along the c-axis, which was confirmed by high-resolution transmission electron microscopy. WO3 nanowires were also spin-coated onto an indium tin oxide/glass conducting substrate, resulting in the formation of a film that was characterized by scanning electron microscopy. Finally, cyclic voltammetry measurements performed on the WO3 thin film showed voltammograms typical for the WO3 redox process.
RESUMO
Crack formation observed across diverse fields like geology, nanotechnology, arts, structural engineering or surface science, is a chaotic and undesirable phenomenon, resulting in random patterns of cracks generally leading to material failure. Limiting the formation of cracks or "programming" the path of cracks is a great technological challenge since it holds promise to enhance material durability or even to develop low cost patterning methods. Drawing inspiration from negative phototropism in plants, we demonstrate the capability to organize, guide, replicate, or arrest crack propagation in colloidal films through remote light manipulation. The key consists in using plasmonic photothermal absorbers to generate "virtual" defects enabling controlled deviation of cracks. We engineer a dip-coating process coupled with selective light irradiation enabling simultaneous deposition and light-directed crack patterning. This approach represents a rare example of a robust self-assembly process with long-range order that can be programmed in both space and time.
RESUMO
Self-assembly and characteristics of hybrid mesoporous silica film templates remain a subject of inquiry. The short time scale of the inorganic condensation and formation of micelles makes our understanding of this process insufficient. To provide an insight into the evaporation-induced self-assembly of such films, we synthesized an efficient molecular probe of the triethoxysilane precursor bearing a pyrene derivative. The probe was introduced into the porous film at the synthesis stage through the sol-gel co-condensation method. At different synthesis stages, the emission of pyrene moieties was measured by fluorescence spectroscopy, revealing the placement of probes within the film. We also report dynamic excimer formation upon template removal. Moreover, we evaluate the influence of several parameters on the pyrene excimer formation phenomenon. The pore geometry, probe concentration, and the presence of another organosilane precursor are investigated in this work.
RESUMO
Recent advances in visible light photocatalysis represent a significant stride towards sustainable catalytic chemistry. However, its successful implementation in fine chemical production remains challenging and requires careful optimization of available photocatalysts. Our work aims to structurally modify bioinspired porphyrin catalysts, addressing issues related to their laborious synthesis and low solubility, with the goal of increasing their efficiency and developing reusable catalytic systems. We have demonstrated the catalytic potential of readily available meso-tetrakis[4-(diethoxyphosphoryl)phenyl]porphyrins (M(TPPP)). Novel metal (Pd(II), Co(II) and In(III)) complexes with this ligand were prepared in good yields. These chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence) and electrochemical methods. The introduction of phosphonate groups on the phenyl substituents of meso-tetraphenylporphyrins (M(TPP)) improves solubility in polar organic solvents without significantly altering the photophysical properties and photostability of complexes. This structural modification also leads to easier reductions and harder oxidations of the macrocycle for all investigated complexes compared to the corresponding TPP derivatives. The free base porphyrin, zinc(II), palladium(II), and indium(III) complexes were studied as photocatalysts for oxidation of sulfides to sulfoxides using molecular oxygen as a terminal oxidant. Both dialkyl and alkyl aryl sulfides were quantitatively transformed into sulfoxides under blue LED irradiation in the acetonitrile-water mixture (10 : 1 v/v) with a low loading (0.005-0.05 mol%) of porphyrin photocatalysts, where H2(TPPP) and Pd(TPPP) were found to be the most efficient. The reaction mechanism was studied using photoluminescence and EPR spectroscopies. Then, to access reusable catalysts, water-soluble derivatives bearing phosphonic acid groups, H2(TPPP-A) and Pd(TPPP-A), were prepared in high yields. These compounds were characterized using spectroscopic methods. Single-crystal X-ray diffraction analysis of Pd(TPPP-A) reveals that the complex forms a 3D hydrogen-bonded organic framework (HOF) in the solid state. Both H2(TPPP-A) and Pd(TPPP-A) were found to catalyze the photooxidation of sulfides by molecular oxygen in the acetonitrile-water mixture (1 : 1 v/v), while only Pd(TPPP-A) resulted in selective production of sulfoxides. The complex Pd(TPPP-A) was easily recovered through extraction in the aqueous phase and successfully reused in five consecutive cycles of the sulfoxidation reaction.
RESUMO
X-Ray imaging techniques are among the most widely used modalities in medical imaging and their constant evolution has led to the emergence of new technologies. The new generation of computed tomography (CT) systems - spectral photonic counting CT (SPCCT) and X-ray luminescence optical imaging - are examples of such powerful techniques. With these new technologies the rising demand for new contrast agents has led to extensive research in the field of nanoparticles and the possibility to merge the modalities appears to be highly attractive. In this work, we propose the design of lanthanide-based nanocrystals as a multimodal contrast agent with the two aforementioned technologies, allowing SPCCT and optical imaging at the same time. We present a systematic study on the effect of the Tb3+ doping level and surface modification on the generation of contrast with SPCCT and the luminescence properties of GdF3:Tb3+ nanocrystals (NCs), comparing different surface grafting with organic ligands and coatings with silica to make these NCs bio-compatible. A comparison of the luminescence properties of these NCs with UV revealed that the best results were obtained for the Gd0.9Tb0.1F3 composition. This property was confirmed under X-ray excitation in microCT and with SPCCT. Moreover, we could demonstrate that the intensity of the luminescence and the excited state lifetime are strongly affected by the surface modification. Furthermore, whatever the chemical nature of the ligand, the contrast with SPCCT did not change. Finally, the successful proof of concept of multimodal imaging was performed in vivo with nude mice in the SPCCT taking advantage of the so-called color K-edge imaging method.
Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Camundongos , Animais , Tomografia Computadorizada por Raios X/métodos , Raios X , Luminescência , Camundongos Nus , Imagens de FantasmasRESUMO
Light-matter interactions are of great interest for potential biological applications (bioimaging, biosensing, phototherapy). For such applications, sharp nanostructures exhibit interesting features since their extinction bands (surface plasmon resonance) cover a large bandwidth in the whole visible wavelength region due to the existence of "hot spots" located at the end of the tips. In this context, gold nanostars appear to be interesting objects. However, their study remains difficult, mainly due to complicated synthetic methods and further functionalization. This paper reports the synthesis, functionalization, and photophysics of luminescent hybrid gold nanostars prepared using a layer-by-layer (LbL) deposition method for the tuning of chromophore-to-particle distances together with the impact of the spectral overlap between the plasmon and the emission/absorption of the dyes. Several luminescent dyes with different optical signatures were selectively adsorbed at the nanoparticle surface. The optimized systems, exhibiting the highest luminescence recovery, clearly showed that overlap must be as low as possible. Also, the fluorescence intensities were quenched in close vicinity of the metal surface and revealed a distance-dependence with almost full recovery of the dyes emission for 11 LbL layers, which corresponded to 15 nm distances evaluated on dried samples. The photophysics of the luminescent core-shell particles were carried out in suspension and correlated with the response of isolated single objects.
Assuntos
Corantes/química , Ouro/química , Nanopartículas Metálicas/químicaRESUMO
Heterostructured cadmium-based core-shell nanoparticles (NPs) are the subject of research because of not only fundamental scientific advances but also a range of technological applications. To increase the range of applications of nanoparticles, it is possible to immobilise them in sol-gel glass that can be easily manufactured and shaped, keeping the properties of the dispersed particles. This allows the creation of new bulk optical materials with tailored properties, opening up opportunities for various technological applications such as lighting or sensing. Herein we report the synthesis of core-shell CdSe/CdS triangular-shaped nanoparticles under an atmosphere of oxygen and at room temperature. A detailed characterisation of the obtained NPs was carried out. The interesting effect of the gelling agent (tetra-n-butylammonium fluoride) on the triangular nanoparticles in solution and the stability of the emission properties over time was investigated. Sol-gel glasses with entrapped triangular NPs were prepared, and their photoluminescence properties were compared with those obtained in colloidal solutions.
RESUMO
Controlling the spatial arrangement of plasmonic nanoparticles is of particular interest to utilize inter-particle plasmonic coupling, which allows changing their optical properties. For bottom-up approaches, colloidal nanoparticles are interesting building blocks to generate more complex structures via controlled self-assembly using the destabilization of colloidal particles. For plasmonic noble metal nanoparticles, cationic surfactants, such as CTAB, are widely used in synthesis, both as shaping and stabilizing agents. In such a context, understanding and predicting the colloidal stability of a system solely composed of AuNPs and CTAB is fundamentally crucial. Here, we tried to rationalize the particle behavior by reporting the stability diagrams of colloidal gold nanostructures taking into account parameters such as the size, shape, and CTAB/AuNP concentration. We found that the overall stability was dependent on the shape of the nanoparticles, with the presence of sharp tips being the source of instability. For all morphologies evaluated here, a metastable area was systematically observed, in which the system aggregated in a controlled way while maintaining the colloidal stability. Combining different strategies with the help of transmission electron microscopy, the behavior of the system in the different zones of the diagrams was addressed. Finally, by controlling the experimental conditions with the previously obtained diagrams, we were able to obtain linear structures with a rather good control over the number of particles participating in the assembly while maintaining good colloidal stability.
RESUMO
A quantum-classical protocol that incorporates Jahn-Teller vibronic coupling effects and cluster analysis of molecular dynamics simulations is reported, providing a tool for simulations of absorption spectra and ultrafast nonadiabatic dynamics in large molecular photosystems undergoing aggregation in solution. Employing zinc phthalocyanine dyes as target systems, we demonstrated that the proposed protocol provided fundamental information on vibronic, electronic couplings and thermal dynamical effects that mostly contribute to the absorption spectra lineshape and the fluorescence quenching processes upon dye aggregation. Decomposing the various effects arising upon dimer formation, the structure-property relations associated with their optical responses have been deciphered at atomistic resolution.
RESUMO
PURPOSE: The purpose of this study was to investigate the feasibility of gadolinium-K-edge-angiography (angio-Gd-K-edge) with gadolinium-based contrast agents (GBCAs) as obtained with spectral photon counting CT (SPCCT) in atherosclerotic rabbits. MATERIALS AND METHODS: Seven atherosclerotic rabbits underwent angio-SPCCT acquisitions with two GBCAs, with similar intravenous injection protocol. Conventional and angio-Gd-K-edge images were reconstructed with the same parameters. Regions of interest were traced in different locations of the aorta and its branches. Hounsfield unit values, Gd concentrations, signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated and compared. The maximum diameter and the diameter of the aorta in regard to atherosclerotic plaques were measured by two observers. Images were subjectively evaluated regarding vessels' enhancement, artefacts, border sharpness and overall image quality. RESULTS: In the analyzable six rabbits, Gd-K-edge allowed visualization of target vessels and no other structures. HU values and Gd concentrations were greatest in the largest artery (descending aorta, 5.6 ± 0.8 [SD] mm), and lowest in the smallest (renal arteries, 2.1 ± 0.3 mm). While greater for conventional images, CNR and SNR were satisfactory for both images (all P < 0.001). For one observer there were no statistically significant differences in either maximum or plaque-diameters (P = 0.45 and all P > 0.05 in post-hoc analysis, respectively). For the second observer, there were no significant differences for images reconstructed with the same parameters (all P < 0.05). All subjective criteria scored higher for conventional images compared to K-edge (all P < 0.01), with the highest scores for enhancement (4.3-4.4 vs. 3.1-3.4). CONCLUSION: With SPCCT, angio-Gd-K-edge after injection of GBCAs in atherosclerotic rabbits is feasible and allows for angiography-like visualization of small arteries and for the reliable measurement of their diameters.
Assuntos
Gadolínio , Tomografia Computadorizada por Raios X , Animais , Coelhos , Tomografia Computadorizada por Raios X/métodos , Angiografia , Meios de Contraste , AbdomeRESUMO
The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.
Assuntos
Meios de Contraste , Doenças do Sistema Nervoso , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Gadolínio , Fagócitos , Doenças do Sistema Nervoso/diagnóstico por imagemRESUMO
A great number of works focus their interest on the study of gold nanoparticle plasmonic properties. Among those, sharp nanostructures appear to exhibit the more interesting features for further developments. In this paper, a complete study on bipyramidal-like gold nanostructures is presented. The nano-objects are prepared in high yield using an original method. This chemical process enables a precise control of the shape and the size of the particles. The specific photophysical properties of gold bipyramids in suspension are ripened by recording the plasmonic response of single and isolated objects. Resulting extinction spectra are precisely correlated to their geometrical structure by mean of electron tomography at the single-particle level. The interplay between the geometrical structure and the optical properties of twisted gold bipyramids is further discussed on the basis of numerical calculations. The influence of several parameters is explored such as the structural aspect ratio or the tip truncation. In the case of an incident excitation polarized along the particle long axis, this study shows how the plasmon resonance position can be sensitive to these parameters and how it can then be efficiently tuned on a large wavelength range.
Assuntos
Tomografia com Microscopia Eletrônica , Ouro/química , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Nanotecnologia/métodos , Tamanho da PartículaRESUMO
A great number of works have focused their research on the synthesis, design and optical properties of gold nanoparticles for potential biological applications (bioimaging, biosensing). For this kind of application, sharp gold nanostructures appear to exhibit the more interesting features since their surface plasmon bands are very sensitive to the surrounding medium. In this paper, a complete study of PEGylated gold nanostars and PEGylated bipyramidal-like nanostructures is presented. The nanoparticles are prepared in high yield and their surfaces are covered with a biocompatible polymer. The photophysical properties of gold bipyramids and nanostars, in suspension, are correlated with the optical response of single and isolated objects. The resulting spectra of isolated gold nanoparticles are subsequently correlated to their geometrical structure by transmission electron microscopy. Finally, the PEGylated gold nanoparticles were incubated with melanoma B16-F10 cells. Dark-field microscopy showed that the biocompatible gold nanoparticles were easily internalized and most of them localized within the cells.
Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Animais , Linhagem Celular Tumoral , Cetrimônio , Compostos de Cetrimônio/química , Endocitose , Ouro/farmacocinética , Histocitoquímica , Teste de Materiais , Camundongos , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Espectrofotometria Ultravioleta , Tensoativos/químicaRESUMO
Numerous research efforts are investigating the possibility of using light interactions with metallic nanoparticles to improve the fluorescence properties of nearby molecules. Few investigations have considered the encapsulation of molecules in metallic nanocavities. In this paper, we present the optical properties of new hybrid nanoparticles consisting of gold nanoshells and fluorescent organic dyes in their liquid cores. Microspectroscopy on single nanoparticle demonstrates that the extinction spectra are in good agreement with Mie's theory. Finite difference time domain (FDTD) calculations reveal that excitation and emission radiations are efficiently transmitted through the thin gold nanoshells. Thus, they can be considered as transparent plasmonic nanocontainers for photoactive cores. In agreement with FDTD calculations, measurements show that fluorophores encapsulated in gold nanoshells keep their brightness, but they show fluorescence lifetimes 1 order of magnitude shorter. As a salient consequence, the photoresistance of encapsulated organic dyes is also improved by an order of magnitude. This unusual ultraviolet photoresistance results from the reduced probability of triplet-singlet conversion that eventually exposes dyes to singlet oxygen photodegradation.
Assuntos
Nanotecnologia/métodos , Compostos Orgânicos/química , Animais , Bovinos , Fluorescência , Corantes Fluorescentes/química , Ouro/química , Luz , Nanopartículas Metálicas/química , Nanoestruturas/química , Fotodegradação , Rodaminas/química , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Raios UltravioletaRESUMO
Solution-processed inorganic nanoporous films are key components for the vast spectrum of applications ranging from dew harvesting to solar cells. Shaping them into complex architectures required for advanced functionality often needs time-consuming or expensive fabrication. In this work, crack formation is harnessed to pattern porous inorganic films in a single step and without using lithography. Aqueous inks, containing inorganic precursors and polymeric latexes enable evaporation-induced, defect-free periodic arrays of cracks with tunable dimensions over several centimeters. The ink formulation strategy is generalized to more than ten inorganic materials including simple and binary porous oxide and metallic films covering a whole spectrum of properties including insulating, photocatalytic, electrocatalytic, conductive, or electrochromic materials. Notably, this approach enables 3D self-assembly of cracks by stacking several layers of different compositions, yielding periodic assemblies of polygonal shapes and Janus-type patterns. The crack patterned periodic arrays of nanoporous TiO2 diffract light, and are used as temperature-responsive diffraction grating sensors. More broadly, this method represents a unique example of a self-assembly process leading to long-range order (over several centimeters) in a robust and controlled way.
RESUMO
Chiral plasmonic nanomaterials exhibiting intense optical activity are promising for numerous applications. In order to prepare those nanostructures, one strategy is to grow metallic nanoparticles in the presence of chiral molecules. However, in such approach the origin of the observed chirality remains uncertain. In this work, we expand the range of available chiral plasmonic nanostructures and we propose another vision of the origin of chirality in such colloidal systems. For that purpose, we investigated the synthesis of two core-shell Au@Ag and Au@Au systems built from gold nanobipyramid cores, in the presence of cysteine. The obtained nanoparticles possess uniform shape and size and show plasmonic circular dichroism in the visible range, and were characterized by electron microscopy, circular dichroism, and UV-vis-NIR spectroscopy. Opto-chiral responses were found to be highly dependent on the morphology and the plasmon resonance. It revealed (i) the importance of the anisotropy for Au@Au nanoparticles and (ii) the role of the multipolar modes for Au@Ag nanoparticles on the way to achieve intense plasmonic circular dichroism. The role of cysteine as shaping agent and as chiral encoder was particularly evaluated. Our experimental results, supported by theoretical simulations, contrast the hypothesis that chiral molecules entrapped in the nanoparticles determine the chiral properties, highlighting the key role of the outmost part of the nanoparticles shell on the plasmonic circular dichroism. Along with these results, the impact of enantiomeric ratio of cysteine on the final shape suggested that the presence of a chiral shape or chiral patterns should be considered.