Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(24): 65572-65586, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37085682

RESUMO

In this research, the effect of a submerged multiple-vane system on the dimensions of flow separation zone (DFSZ) is assessed via 192 measured datasets. The vanes' shape comprised two segments, curved and flat plates which are located in the connection of main channel to the lateral intake channel with an angle of 55°. In this direction, a butterfly's array for the vanes' arrangement along with different main controlling factors such as distances of vanes along the flow (δl), degree of curvature (ß), and angles of attack to the local primary flow direction (θ) is utilized. Through capturing photos and utilizing AutoCAD and SURFER software, maximum relative length and width are calculated. Based on the experimental measurements, maximum percentage reduction of DFSZ, in comparison with the controlled test (without submerged vanes), is obtained with θ = 30°, ß = 34°, and δl = 10 cm with value of 78 and 76%, respectively. Moreover, several data-driven models, namely, gene expression programming (GEP), support vector regression (SVR), and a robust hybrid SVR with an ant colony optimization algorithm (ACO) (i.e., hybrid SVR-ACO model), are developed in order to predict DFSZ via the operative dimensionless variables realized by Spearman's rho and Pearson's coefficient processes. In accordance with the statistical metrics, model grading process, scatter plot, and the hybrid SVR(RBF)-ACO model are preferred as the best and most precise model to predict maximum relative length and width with a total grade (TG) of 6.75 and 5.8, respectively. The generated algebraic formula for DFSZ under the optimal scenario of GEP is equated with the corresponding measured ones and the results are within 0-10%.


Assuntos
Algoritmos , Software
2.
Environ Sci Pollut Res Int ; 29(49): 74526-74539, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35639314

RESUMO

One of the most essential difficulties in the design and management of bridge piers is the estimation and modeling of scouring around the piers. The scour depth downstream of twin and three piers were simulated using a new outlier robust extreme learning machine (ORELM) model in this study. Furthermore, k-fold cross-validation with k = 4 was employed to validate the outcomes of numerical models. Four ORELM models with effective scouring parameters were first created to simulate scour depth. After then, the number of hidden layer neurons increased from two to thirty. The number of ideal hidden neurons was determined by examining the modeling results. The sigmoid activation function was also introduced as the best function. Furthermore, a sensitivity analysis was used to identify the superior model. The best model predicted scour depth as a function of the Froude number (Fr), the pier diameter to flow depth ratio (D/h), and the distance between the piers to flow depth ratio (d/h). The values of the objective function were accurately approximated by this model. As a result, using the ORELM model, the R2, scatter index, and Nash-Sutcliffe efficiency coefficient were calculated to be 0.953, 0.146, and 0.949, respectively. The most efficient parameters for simulating the scour depth were Fr and D/h, according to the modeling results. It is worth noting that nearly half of the superior model's simulated outputs had an inaccuracy of less than 10%. The superior model's performance has been underestimated, according to uncertainty analysis. After that, a simple and practical equation for calculating the scour depth was established for the superior model. Additionally, the influence of each input parameter on the objective function was assessed using a partial derivative sensitivity analysis.

3.
Environ Sci Pollut Res Int ; 28(43): 60842-60856, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34165757

RESUMO

Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the operational period as well. In this research, soft computing models namely multi-layer perceptron neural network (MLPNN), support vector machine (SVM), multivariate adaptive regression splines (MARS), genetic programming (GP), M5 algorithm, and group method of data handling (GMDH) were used to predict the piezometric head in the core and the seepage discharge through the body of earth dam. For this purpose, the data recorded by the absolute instrument during the last 94 months of Shahid Kazemi Bukan Dam were used. The results showed that all of the applied models had a permissible level of accuracy in the prediction of the piezometric heads. The average error indices for the models in the training phase were R2= 0.957 and RMSE= 0.806 and in the testing phase were equal to R2= 0.949 and RMSE= 0.932, respectively. The performances of all models except the M5 and MARS in predicting seepage discharge are nearly identical; however, the best is the MARS, and the weakest is the M5 algorithm.


Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA