Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 152: 106406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280270

RESUMO

This paper aims to fabricate functionally graded dental crown using a multi-slurry tape casting additive manufacturing technology. The different luminescence of the dental crown was obtained with different composition of zirconia and yttria. Zirconia with tunable mechanical properties and translucency are obtained by adding 3, 3.5, 4, 4.5, and 5 mol% of yttrium oxide to zirconia powder. After obtaining the printable slurry with maximum solid loading, the green bodies are prepared using the in-house built high-speed multi-ceramic tape casting technology. They are later sintered with two-stage sintering method. After the successful fabrication, the mechanical properties and translucency of the specimens were evaluated with Vickers hardness, three-point bending and translucency parameter tests. Finally, an FGM tooth crown with five photocurable slurries is proposed to demonstrate the translucent gradient effect of sintered part. The solid loading of 80% zirconia and 20% resin delivered samples without any surface cracks. The shrinkage ratio analysis showed that the sintered sample dimension was reduced by 20%, 20%, and 23% along X, Y, and Z directions. The samples fabricated with 3% yttrium oxide to zirconia delivered excellent hardness (1687 HV) and flexural strength (650.6 MPa). However, the relative luminescence increased with increasing the yttrium oxide for 3-5 mol%. With the optimized process parameters, the proposed dental crown is fabricated and analyzed for their shrinkage ratio, mechanical, and translucency properties. The study proposes the potential of fabricating customized dental crown with gradient translucent appearance.


Assuntos
Cerâmica , Ítrio , Zircônio , Coroas
2.
Materials (Basel) ; 17(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38730946

RESUMO

The need to manufacture components out of copper is significantly increasing, particularly in the solar technology, semiconductor, and electric vehicle sectors. In the past few decades, infrared laser (IR) and green laser (GL) have been the primary technologies used to address this demand, especially for small or thin components. However, with the increased demand for energy saving, alternative joint techniques such as blue diode laser (BDL) are being actively explored. In this paper, bead-on-plate welding experiments on 0.2 mm thick pure copper samples employing a BDL are presented. Two sets of parameters were carefully selected in this investigation, namely Cu-1: Power (P) = 200 W; Speed (s) = 1 mm/s; and angle = 0°, and Cu-2: P = 200 W; s = 5 mm/s; and angle = 10°. The results from both sets of parameters produced defect-free full penetration welds. Hardness test results indicated relatively softer weld zones compared with the base metal. Tensile test samples fractured in the weld zones. Overall, the samples welded with Cu-1 parameters showed better mechanical properties, such as strength and elongation, than those welded with the Cu-2 parameters. The tensile strength and elongation obtained from Cu-1 were marginally lower than those of the unwelded pure copper. The outcomes from this research provide an alternative welding technique that is able to produce reliable, strong, and precise joints, particularly for small and thin components, which can be very challenging to produce.

3.
Materials (Basel) ; 16(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512418

RESUMO

This review paper provides a comprehensive overview of the phenomenon of superlubricity, its associated material characteristics, and its potential applications. Superlubricity, the state of near-zero friction between two surfaces, presents significant potential for enhancing the efficiency of mechanical systems, thus attracting significant attention in both academic and industrial realms. We explore the atomic/molecular structures that enable this characteristic and discuss notable superlubric materials, including graphite, diamond-like carbon, and advanced engineering composites. The review further elaborates on the methods of achieving superlubricity at both nanoscale and macroscale levels, highlighting the influence of environmental conditions. We also discuss superlubricity's applications, ranging from mechanical systems to energy conservation and biomedical applications. Despite the promising potential, the realization of superlubricity is laden with challenges. We address these technical difficulties, specifically those related to achieving and maintaining superlubricity, and the issues encountered in scaling up for industrial applications. The paper also underscores the sustainability concerns associated with superlubricity and proposes potential solutions. We conclude with a discussion of the possible future research directions and the impact of technological innovations in this field. This review thus provides a valuable resource for researchers and industry professionals engaged in the development and application of superlubric materials.

4.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445023

RESUMO

Inconel 718 (IN 718) powder is used for a laser powder bed fusion (LPBF) printer, but the mechanical properties of the as-built object are not suited to cold deep drawing applications. This study uses the Taguchi method to design experimental groups to determine the effect of various factors on the mechanical properties of as-built objects produced using an LPBF printer. The optimal printing parameters are defined using the result for the factor response to produce an as-built object with the greatest ultimate tensile strength (UTS), and this is used to produce a specimen for post-processing, including heat treatment (HT) and surface finishing. The HT parameter value that gives the maximum UTS is the optimal HT parameter. The optimal printing and HT parameter values are used to manufacture a die and a punch to verify the suitability of the manufactured tool for deep drawing applications. The experimental results show that the greatest UTS is 1091.33 MPa. The optimal printing parameters include a laser power of 190 W, a scanning speed of 600 mm/s, a hatch space of 0.105 mm and a layer thickness of 40 µm, which give a UTS of 1122.88 MPa. The UTS for the post-processed specimen increases to 1511.9 MPa. The optimal parameter values for HT are heating to 720 °C and maintaining this temperature for 8 h, decreasing the temperature to 620 °C and maintaining this temperature for 8 h, and cooling to room temperature in the furnace. Surface finishing increases the hardness to HRC 55. Tools, including a punch and a die, are manufactured using these optimized parameter values. The deep drawing experiment demonstrates that the manufactured tools that are produced using these values form a round cup of Aluminum alloy 6061. The parameter values that are defined can be used to manufacture IN 718 tools with a UTS of more than 1500 MPa and a hardness of more than 50 HRC, so these tools are suited to cold deep drawing specifications.

5.
Materials (Basel) ; 14(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34683551

RESUMO

Selective laser melting has a great potential to manufacture biocompatible metal alloy scaffolds or implants with a regulated porosity structure. This study uses five face-centered cubic (FCC) lattice structures, including FCC, FCC-Z, S-FCC, S-FCC-Z, and FCC-XYZ. Specimens with different lattice structures are fabricated using two laser energy densities, 71 J/mm3 and 125 J/mm3. Density, tensile, compressive and flexural test results exhibit the effect of laser parameters and lattice structure geometries on mechanical properties. The higher laser energy density of 125 J/mm3 results in higher properties such as density, strength, and Young's modulus than the laser energy density of 71 J/mm3. The S-FCC lattice has the lowest density among all lattices. The mechanical tests result show specimen with FCC-XYZ lattice structures fabricated using a laser energy density of 125 J/mm3 meet the tensile properties requirement for human ribs. This structure also meets the requirement in flexural strength performance, but its stiffness is over that of human ribs. The compression test results of lattices are still incomparable due to unavailable compression data of the human ribs. In short, The FCC-XYZ lattice design fabricated by the 125 J/mm3 laser energy density parameter can be used to manufacture customized rib implants.

6.
Materials (Basel) ; 14(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203344

RESUMO

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°-relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α' martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA