Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biol Chem ; 296: 100180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303629

RESUMO

Glycoconjugates play a central role in several cellular processes, and alteration in their composition is associated with numerous human pathologies. Substrates for cellular glycosylation are synthesized in the hexosamine biosynthetic pathway, which is controlled by the glutamine:fructose-6-phosphate amidotransfera-se (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer; however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in Escherichia coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the expected ordered bi-bi mechanism, and performs the glucosamine-6-phosphate synthesis much more slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerize fructose-6-phosphate into glucose-6-phosphate even in the presence of equimolar amounts of glutamine, which results in unproductive glutamine hydrolysis. Structural analysis of a three-dimensional model of rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in the glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations suggest that this loop is the most flexible portion of the protein and plays a key role on conformational states of hGFAT2. Thus, our study provides the first comprehensive set of data on the structure, kinetics, and mechanics of hGFAT2, which will certainly contribute to further studies on the (patho)physiology of hGFAT2.


Assuntos
Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/química , Humanos , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
2.
Mol Microbiol ; 116(3): 890-908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34184334

RESUMO

The lipid mediators, platelet-activating factor (PAF) and lysophosphatidylcholine (LPC), play relevant pathophysiological roles in Trypanosoma cruzi infection. Several species of LPC, including C18:1 LPC, which mimics the effects of PAF, are synthesized by T. cruzi. The present study identified a receptor in T. cruzi, which was predicted to bind to PAF, and found it to be homologous to members of the progestin and adiponectin family of receptors (PAQRs). We constructed a three-dimensional model of the T. cruzi PAQR (TcPAQR) and performed molecular docking to predict the interactions of the TcPAQR model with C16:0 PAF and C18:1 LPC. We knocked out T. cruzi PAQR (TcPAQR) gene and confirmed the identity of the expressed protein through immunoblotting and immunofluorescence assays using an anti-human PAQR antibody. Wild-type and knockout (KO) parasites were also used to investigate the in vitro cell differentiation and interactions with peritoneal mouse macrophages; TcPAQR KO parasites were unable to react to C16:0 PAF or C18:1 LPC. Our data are highly suggestive that PAF and LPC act through TcPAQR in T. cruzi, triggering its cellular differentiation and ability to infect macrophages.


Assuntos
Lisofosfatidilcolinas/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Doença de Chagas/parasitologia , Técnicas de Inativação de Genes/métodos , Interações Hospedeiro-Parasita , Humanos , Lisofosfatidilcolinas/química , Macrófagos , Camundongos , Simulação de Acoplamento Molecular , Filogenia , Fator de Ativação de Plaquetas/química , Conformação Proteica , Proteínas de Protozoários/química , Receptores de Adiponectina/química , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Receptores de Progesterona/química , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Trypanosoma cruzi/química
3.
Molecules ; 26(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668914

RESUMO

Probing protein surfaces to accurately predict the binding site and conformation of a small molecule is a challenge currently addressed through mainly two different approaches: blind docking and cavity detection-guided docking. Although cavity detection-guided blind docking has yielded high success rates, it is less practical when a large number of molecules must be screened against many detected binding sites. On the other hand, blind docking allows for simultaneous search of the whole protein surface, which however entails the loss of accuracy and speed. To bridge this gap, in this study, we developed and tested BLinDPyPr, an automated pipeline which uses FTMap and DOCK6 to perform a hybrid blind docking strategy. Through our algorithm, FTMap docked probe clusters are converted into DOCK6 spheres for determining binding regions. Because these spheres are solely derived from FTMap probes, their locations are contained in and specific to multiple potential binding pockets, which become the regions that are simultaneously probed and chosen by the search algorithm based on the properties of each candidate ligand. This method yields pose prediction results (45.2-54.3% success rates) comparable to those of site-specific docking with the classic DOCK6 workflow (49.7-54.3%) and is half as time-consuming as the conventional blind docking method with DOCK6.


Assuntos
Algoritmos , Automação , Desenho Assistido por Computador , Fatores de Troca do Nucleotídeo Guanina/química , Simulação de Acoplamento Molecular , Humanos
4.
J Struct Biol ; 195(2): 216-226, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27291071

RESUMO

The active site of HIV protease (HIV-PR) is covered by two flaps. These flaps are known to be essential for the catalytic activity of the HIV-PR, but their exact conformations at the different stages of the enzymatic pathway remain subject to debate. Understanding the correct functional dynamics of the flaps might aid the development of new HIV-PR inhibitors. It is known that, the HIV-PR catalytic efficiency is pH-dependent, likely due to the influence of processes such as charge transfer and protonation/deprotonation of ionizable residues. Several Molecular Dynamics (MD) simulations have reported information about the HIV-PR flaps. However, in MD simulations the protonation of a residue is fixed and thus it is not possible to study the correlation between conformation and protonation state. To address this shortcoming, this work attempts to capture, through Constant pH Molecular Dynamics (CpHMD), the conformations of the apo, substrate-bound and inhibitor-bound HIV-PR, which differ drastically in their flap arrangements. The results show that the HIV-PR flaps conformations are defined by the protonation of the catalytic residues Asp25/Asp25' and that these residues are sensitive to pH changes. This study suggests that the catalytic aspartates can modulate the opening of the active site and substrate binding.


Assuntos
Ácido Aspártico/química , Catálise , Inibidores da Protease de HIV/química , Protease de HIV/química , HIV/química , Sítios de Ligação , Domínio Catalítico , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
5.
Arch Biochem Biophys ; 573: 92-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25791019

RESUMO

During the erythrocytic cycle of Plasmodium falciparum malaria parasites break down host hemoglobin, resulting in the release of free heme (ferriprotoporphyrin IX). Heme is a generator of free radicals that cause oxidative stress, but it is detoxified by crystallization into hemozoin inside the food vacuole. We evaluated the interaction of heme and heme analogues with falcipain-2, a P. falciparum food vacuole cysteine protease that plays a key role in hemoglobin digestion. Heme bound to falcipain-2 with a 1:1 stoichiometry, and heme inhibited falcipain-2 activity against both human hemoglobin and chromogenic peptide substrates through a noncompetitive-like mechanism. A series of porphyrin analogues was screened for inhibition of falcipain-2, demonstrating a minor contribution of iron to heme-falcipain-2 interaction, and revealing dependence on both propionic and vinyl groups for inhibition of falcipain-2 by heme. Docking and molecular dynamics simulation unveiled a novel, inducible heme-binding moiety in falcipain-2 adjacent to the catalytic site. Kinetic data suggested that the noncompetitive-like inhibition was substrate inhibition induced by heme. Collectively these data suggest that binding of heme to falcipain-2 may limit the accumulation of free heme in the parasite food vacuole, providing a means of heme detoxification in addition to crystallization into hemozoin.


Assuntos
Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Heme/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Regulação Alostérica , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Porfirinas/química , Ligação Proteica , Proteínas Recombinantes/química
6.
Biochemistry ; 53(18): 2884-9, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24739062

RESUMO

We investigated the folding of the 70 kDa human cytosolic inducible protein (Hsp70) in vitro using high hydrostatic pressure as a denaturing agent. We followed the structural changes in Hsp70 induced by high hydrostatic pressure using tryptophan fluorescence, molecular dynamics, circular dichroism, high-performance liquid chromatography gel filtration, dynamic light scattering, ATPase activity, and chaperone activity. Although monomeric, Hsp70 is very sensitive to hydrostatic pressure; after pressure had been removed, the protein did not return to its native sate but instead formed oligomeric species that lost chaperone activity but retained ATPase activity.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Pressão Hidrostática , Chaperonas Moleculares/metabolismo , Conformação Proteica , Dicroísmo Circular , Proteínas de Choque Térmico HSP70/química , Humanos , Desnaturação Proteica , Dobramento de Proteína
7.
BMC Genomics ; 15 Suppl 7: S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25573486

RESUMO

BACKGROUND: Over the last decades, a vast structural knowledge has been gathered on the HIV-1 protease (PR). Noticeably, most of the studies focused the B-subtype, which has the highest prevalence in developed countries. Accordingly, currently available anti-HIV drugs target this subtype, with considerable benefits for the corresponding patients. RESULTS: Herein, we used molecular dynamics simulations to investigate the role of this polymorphism on the interaction of PR with six of its natural cleavage-sites substrates. CONCLUSIONS: With multiple approaches and analyses we identified structural and dynamical determinants associated with the changes found in the binding affinity of the M36I variant. This mutation influences the flexibility of both PR and its complexed substrate. The observed impact of M36I, suggest that combination with other non-B subtype polymorphisms, could lead to major effects on the interaction with the 12 known cleavage sites, which should impact the virion maturation.


Assuntos
Protease de HIV/genética , Protease de HIV/metabolismo , Polimorfismo Genético , Sítios de Ligação/genética , Simulação por Computador , Protease de HIV/química , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica/genética , Especificidade por Substrato/genética , Proteínas Virais/química , Proteínas Virais/metabolismo
8.
Curr Med Chem ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37711130

RESUMO

Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.

9.
Proteins ; 80(9): 2305-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22622959

RESUMO

The folding process defines three-dimensional protein structures from their amino acid chains. A protein's structure determines its activity and properties; thus knowing such conformation on an atomic level is essential for both basic and applied studies of protein function and dynamics. However, the acquisition of such structures by experimental methods is slow and expensive, and current computational methods mostly depend on previously known structures to determine new ones. Here we present a new software called GSAFold that applies the generalized simulated annealing (GSA) algorithm on ab initio protein structure prediction. The GSA is a stochastic search algorithm employed in energy minimization and used in global optimization problems, especially those that depend on long-range interactions, such as gravity models and conformation optimization of small molecules. This new implementation applies, for the first time in ab initio protein structure prediction, an analytical inverse for the Visitation function of GSA. It also employs the broadly used NAMD Molecular Dynamics package to carry out energy calculations, allowing the user to select different force fields and parameterizations. Moreover, the software also allows the execution of several simulations simultaneously. Applications that depend on protein structures include rational drug design and structure-based protein function prediction. Applying GSAFold in a test peptide, it was possible to predict the structure of mastoparan-X to a root mean square deviation of 3.00 Å.


Assuntos
Algoritmos , Modelos Químicos , Proteínas/química , Software , Animais , Biologia Computacional , Simulação por Computador , Peptídeos e Proteínas de Sinalização Intercelular , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas/metabolismo , Vespas
10.
PLoS One ; 17(4): e0267286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452484

RESUMO

The melanocortin-1 receptor (MC1R) is one of the key proteins involved in the regulation of melanin production and several polymorphisms have been associated with different phenotypes of skin and hair color in human and nonhuman species. Most of the knowledge is centered on more homogeneous populations and studies involving an admixed group of people should be encouraged due to the great importance of understanding the human color variation. This work evaluates the MC1R diversity and the possible impacts of MC1R variants in an admixed sample population of Rio de Janeiro, Brazil, which is a product of Native American, African, and European miscegenation. Sequencing of complete coding region and part of the 3´UTR of MC1R gene identified 31 variants including one insertion and three novel synonymous substitutions in sample population grouped according to skin, hair and eye pigmentation levels. In nonmetric multidimensional scaling analysis (NMDS), three main clusters were identified, in which the Brazilian dark skin group remained in the African cluster whereas the intermediate and the light skin color phenotype in the European one. None gathered with Asians since their immigration to Brazil was a recent event. In silico analyses demonstrated that Cys35Tyr, Ile155Thr and Pro256Ser, found in our population, have a negative effect on receptor function probably due to changes on the receptor structure. Notably, Cys35Tyr mutation could potentially impair agonist binding. Altogether, this work contributes to the understanding of the genetic background of color variation on an admixed population and gives insights into the damaging effects of MC1R variants.


Assuntos
Cor de Cabelo , Receptor Tipo 1 de Melanocortina , Brasil , Variação Genética , Cor de Cabelo/genética , Humanos , Fenótipo , Polimorfismo Genético , Receptor Tipo 1 de Melanocortina/genética
11.
BMC Genomics ; 11 Suppl 5: S5, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210971

RESUMO

BACKGROUND: Cathepsin B (catB) is a promising target for anti-cancer drug design due to its implication in several steps of tumorigenesis. catB activity and inhibition are pH-dependent, making it difficult to identify efficient inhibitor candidates for clinical trials. In addition it is known that heparin binding stabilizes the enzyme in alkaline conditions. However, the molecular mechanism of stabilization is not well understood, indicating the need for more detailed structural and dynamic studies in order to clarify the influence of pH and heparin binding on catB stability. RESULTS: Our pKa calculations of catB titratable residues revealed distinct protonation states under different pH conditions for six key residues, of which four lie in the crucial interdomain interface. This implies changes in the overall charge distribution at the catB surface, as revealed by calculation of the electrostatic potential. We identified two basic surface regions as possible heparin binding sites, which were confirmed by docking calculations. Molecular dynamics (MD) of both apo catB and catB-heparin complexes were performed using protonation states for catB residues corresponding to the relevant acidic or alkaline conditions. The MD of apo catB at pH 5.5 was very stable, and presented the highest number and occupancy of hydrogen bonds within the inter-domain interface. In contrast, under alkaline conditions the enzyme's overall flexibility was increased: interactions between active site residues were lost, helical content decreased, and domain separation was observed as well as high-amplitude motions of the occluding loop - a main target of drug design studies. Essential dynamics analysis revealed that heparin binding modulates large amplitude motions promoting rearrangement of contacts between catB domains, thus favoring the maintenance of helical content as well as active site stability. CONCLUSIONS: The results of our study contribute to unraveling the molecular events involved in catB inactivation in alkaline pH, highlighting the fact that protonation changes of few residues can alter the overall dynamics of an enzyme. Moreover, we propose an allosteric role for heparin in the regulation of catB stability in such a manner that the restriction of enzyme flexibility would allow the establishment of stronger contacts and thus the maintenance of overall structure.


Assuntos
Regulação Alostérica/fisiologia , Catepsina B/metabolismo , Heparina/metabolismo , Modelos Moleculares , Regulação Alostérica/genética , Sítios de Ligação/genética , Catepsina B/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Eletricidade Estática
12.
J Comput Chem ; 31(15): 2723-34, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20839299

RESUMO

The standard parameterization of the Linear Interaction Energy (LIE) method has been applied with quite good results to reproduce the experimental absolute binding free energies for several protein-ligand systems. However, we found that this parameterization failed to reproduce the experimental binding free energy of Plasmepsin II (PlmII) in complexes with inhibitors belonging to four dissimilar scaffolds. To overcome this fact, we developed three approaches of LIE, which combine systematic approaches to predict the inhibitor-specific values of α, ß, and γ parameters, to gauge their ability to calculate the absolute binding free energies for these PlmII-Inhibitor complexes. Specifically: (i) we modified the linear relationship between the weighted nonpolar desolvation ratio (WNDR) and the α parameter, by introducing two models of the ß parameter determined by the free energy perturbation (FEP) method in the absence of the constant term γ, and (ii) we developed a new parameterization model to investigate the linear correlation between WNDR and the correction term γ. Using these parameterizations, we were able to reproduce the experimental binding free energy from these systems with mean absolute errors lower than 1.5 kcal/mol.


Assuntos
Algoritmos , Ácido Aspártico Proteases/antagonistas & inibidores , Ácido Aspártico Proteases/química , Inibidores Enzimáticos/química , Simulação de Dinâmica Molecular , Antimaláricos/química , Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Proteases/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Ligantes , Maleabilidade , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Termodinâmica
13.
Comput Biol Chem ; 87: 107293, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32559640

RESUMO

Currently Alzheimer's disease (AD) is a devastating neurological disorder that mainly affects the elderly. The treatment of AD has as main objective to increase the levels of ACh in the synaptic cleft by inhibiting the cholinesterase enzymes, which are responsible for the degradation of ACh. Twenty one synthesized coumarins and neoflavanones (4-arylcoumarins) and theoretical studies were used to select the most promising ligands for in vitro experimental studies by Nuclear Magnetic Resonance. The eight compounds selected for the experimental study only 12b (effectiveness 68.54 ±â€¯3.22%) was promising AChE inhibitor. This compound (12b) presents substituents at positions 4, 5, 6, 7 and 8 in a coumarin nucleus, being the most significant characteristic in comparison to the other studied compounds. These results can be used for the design and synthesis of other possible derivatives with inhibitory potential of AChE.

14.
Proteins ; 73(2): 440-57, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18442137

RESUMO

Plasmepsins are aspartic proteases involved in the initial steps of the hemoglobin degradation pathway, a critical stage in the Plasmodium falciparum life cycle during human infection. Thus, they are attractive targets for novel therapeutic compounds to treat malaria, which remains one of the world's biggest health problems. The three-dimensional structures available for P. falciparum plasmepsins II and IV make structure-based drug design of antimalarial compounds that focus on inhibiting plasmepsins possible. However, the structural flexibility of the plasmepsin active site cavity combined with insufficient knowledge of the functional residues and of those determining the specificity of parasitic enzymes is a drawback when designing specific inhibitors. In this study, we have combined a sequence and structural analysis with molecular dynamics simulations to predict the functional residues in P. falciparum plasmepsins. The careful analysis of X-ray structures and 3D models carried out here suggests that residues Y17, V105, T108, L191, L242, Q275, and T298 are important for plasmepsin function. These seven amino acids are conserved across the malarial strains but not in human aspartic proteases. Residues V105 and T108 are localized in a flap of an interior pocket and they only establish contacts with a specific non-peptide achiral inhibitor. We also observed a rapid conformational change in the L3 region of plasmepsins that closes the active site of the enzyme, which explains earlier experimental findings. These results shed light on the role of V105 and T108 residues in plasmepsin specificities, and they should be useful in structure-based design of novel, selective inhibitors that may serve as antimalarial drugs.


Assuntos
Ácido Aspártico Endopeptidases/química , Plasmodium falciparum/enzimologia , Animais , Catepsinas/química , Simulação por Computador , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Pepstatinas/química , Conformação Proteica , Análise de Sequência
15.
Biochim Biophys Acta Gen Subj ; 1862(12): 2911-2923, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30253205

RESUMO

BACKGROUND: Falcipain 2 (FP-2) is the hemoglobin-degrading cysteine protease of Plasmodium falciparum most extensively targeted to develop novel antimalarials. However, no commercial antimalarial drugs based on FP-2 inhibition are available yet due to the low selectivity of most FP-2 inhibitors against the human cysteine proteases. METHODS: A structure-based virtual screening (SVBS) using Maybridge HitFinder™ compound database was conducted to identify potential FP-2 inhibitors. In vitro enzymatic and cell-growth inhibition assays were performed for the top-scoring compounds. Docking, molecular dynamics (MD) simulations and free energy calculations were employed to study the interaction of the best hits with FP-2 and other related enzymes. RESULTS AND CONCLUSIONS: Two hits based on 4-(9H-fluoren-9-yl) piperazin-1-yl) methanone scaffold, HTS07940 and HTS08262, were identified as inhibitors of FP-2 (half-maximal inhibitory concentration (IC50) = 64 µM and 14.7 µM, respectively) without a detectable inhibition against the human off-target cathepsin K (hCatK). HTS07940 and HTS08262 inhibited the growth of the multidrug-resistant P. falciparum strain FCR3 in culture (half-maximal inhibitory concentrations (IC50) = 2.91 µM and 34 µM, respectively) and exhibited only moderate cytotoxicity against HeLa cells (Half-maximal cytotoxic concentration (CC50) = 133 µM and 350 µM, respectively). Free energy calculations reproduced the experimental affinities of the hits for FP-2 and explained the selectivity with respect to hCatK. GENERAL SIGNIFICANCE: To the best of our knowledge, HTS07940 stands among the most selective FP-2 inhibitors identified by SBVS reported so far, displaying moderate antiplasmodial activity and low cytotoxicity against human cells. Hence, this compound constitutes a promising lead for the design of more potent and selective FP-2 inhibitors.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/isolamento & purificação , Bases de Dados Factuais , Descoberta de Drogas , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Cell Biochem Biophys ; 44(3): 395-404, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16679526

RESUMO

Africa accounts for the majority of HIV-1 infections worldwide caused mainly by the A and C viral subtypes rather than B subtype, which prevails in the United States and Western Europe. In Brazil, B subtype is the major subtype, but F, C, and A also circulate. These non-B subtypes present polymorphisms, and some of them occur at sites that have been associated with drug resistance, including the HIV-1 protease (PR), one important drug target. Here, we report a Molecular Dynamics study of the B and non-B PR complexed with the inhibitor ritonavir to delineate the behavior of each subtype. We compare root mean squared deviation, binding free energy by linear interaction energy approach, hydrogen bonds, and intermolecular contact surface area between inhibitor and PR. From our results, we can provide a basis to understand the molecular mechanism of drug resistance in non-B subtypes. In this sense, we found a decrease of approx 4 kcal/mol in deltaG of binding between B and non-B subtypes. This corresponds to the loss of one hydrogen bond, which is in agreement with our H-bond analysis. Previous experimental affinity studies reported analogous results with inhibition constant values for non-B PR.


Assuntos
Farmacorresistência Viral/genética , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , Protease de HIV/genética , HIV-1/enzimologia , Modelos Moleculares , Polimorfismo Genético/genética , África , Ásia , Pesquisa Biomédica , Brasil , Simulação por Computador , Desenho de Fármacos , Protease de HIV/metabolismo , HIV-1/classificação , Ligação de Hidrogênio , Conformação Molecular , Ritonavir/farmacologia , Termodinâmica
17.
Data Brief ; 8: 1144-50, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27536715

RESUMO

The data described here supports the research article "Unraveling HIV Protease Flaps Dynamics by Constant pH Molecular Dynamics Simulations" (Soares et al., 2016) [1]. The data involves both standard Molecular Dynamics (MD) and Constant pH Molecular Dynamics (CpHMD) to elucidate the effect of protonation states of catalytic dyad on the HIV-PR conformation. The data obtained from MD simulation demonstrate that the protonation state of the two aspartic acids (Asp25/Asp25') has a strong influence on the dynamics of the HIV-PR. Regarding the CpHMD simulation, we performed pka calculations for HIV-PR and the data indicate that only one catalytic aspartate should be protonated.

18.
Biophys Chem ; 115(1): 1-10, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15848278

RESUMO

Cytosolic Plasmodium falciparum serine hydroxymethyltransferase (pfSHMT) is a potential target for antimalarial chemotherapy. Contrasting with the other enzymes involved in the parasite folate cycle, little information is available about this enzyme, and its crystallographic structure is unknown yet. In this paper, we propose a theoretical low-resolution 3D model for pfSHMT in complex with glycine and 5-formyl tetrahydrofolate (5-FTHF) based on homology modeling by multiple alignment followed by intensive optimization, validation and dynamics simulations in water. Comparison between the active sites of our model and that of crystallographic Human SHMT (hSHMT) revealed key differences that could be useful for the design of new selective inhibitors of pfSHMT.


Assuntos
Simulação por Computador , Glicina Hidroximetiltransferase/química , Glicina/química , Leucovorina/química , Modelos Moleculares , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Bactérias/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Imageamento Tridimensional , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
PLoS One ; 9(1): e84531, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24400098

RESUMO

The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrP(C)) into the scrapie form (PrP(Sc)) is the hallmark of TSEs. Once formed, PrP(Sc) aggregates and catalyzes PrP(C) misfolding into new PrP(Sc) molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrP(Sc) (ScN2a) for their ability to inhibit PK-resistant PrP (PrP(Res)) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrP(Res) in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrP(Res) from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP(109-149)). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrP(Res) in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are attractive candidates for prion disease therapy.


Assuntos
Compostos Heterocíclicos/farmacologia , Príons/efeitos dos fármacos , Animais , Linhagem Celular , Simulação por Computador , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/química , Humanos , Modelos Moleculares , Príons/química , Conformação Proteica
20.
PLoS Negl Trop Dis ; 8(8): e3077, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25101628

RESUMO

BACKGROUND: Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF) is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR). Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC), namely sn-1 C18:1(delta 9)-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV) and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could eventually be exploited as a potential target for new therapeutic interventions.


Assuntos
Lisofosfatidilcolinas/química , Fator de Ativação de Plaquetas/química , Trypanosoma cruzi/química , Animais , Azepinas/farmacologia , Lisofosfatidilcolinas/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/química , Coelhos , Receptores Acoplados a Proteínas G/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA