Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mol Psychiatry ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997609

RESUMO

Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.

2.
Neurobiol Dis ; 148: 105189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227491

RESUMO

Mutations in the TM4SF2 gene, which encodes TSPAN7, cause a severe form of intellectual disability (ID) often comorbid with autism spectrum disorder (ASD). Recently, we found that TM4SF2 loss in mice affects cognition. Here, we report that Tm4sf2-/y mice, beyond an ID-like phenotype, display altered sociability, increased repetitive behaviors, anhedonic- and depressive-like states. Cognition relies on the integration of information from several brain areas. In this context, the lateral habenula (LHb) is strategically positioned to coordinate the brain regions involved in higher cognitive functions. Furthermore, in Tm4sf2-/y mice we found that LHb neurons present hypoexcitability, aberrant neuronal firing pattern and altered sodium and potassium voltage-gated ion channels function. Interestingly, we also found a reduced expression of voltage-gated sodium channel and a hyperactivity of the PKC-ERK pathway, a well-known modulator of ion channels activity, which might explain the functional phenotype showed by Tm4sf2-/y mice LHb neurons. These findings support Tm4sf2-/y mice as useful in modeling some ASD-like symptoms. Additionally, we can speculate that LHb functional alteration in Tm4sf2-/y mice might play a role in the disease pathophysiology.


Assuntos
Habenula/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Anedonia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Depressão , Modelos Animais de Doenças , Habenula/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Proteína Quinase C/metabolismo , Comportamento Social , Comportamento Estereotipado
3.
Hum Mol Genet ; 27(6): 1027-1038, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360992

RESUMO

The PCDH19 gene (Xp22.1) encodes the cell-adhesion protein protocadherin-19 (PCDH19) and is responsible for a neurodevelopmental pathology characterized by female-limited epilepsy, cognitive impairment and autistic features, the pathogenic mechanisms of which remain to be elucidated. Here, we identified a new interaction between PCDH19 and GABAA receptor (GABAAR) alpha subunits in the rat brain. PCDH19 shRNA-mediated downregulation reduces GABAAR surface expression and affects the frequency and kinetics of miniature inhibitory postsynaptic currents (mIPSCs) in cultured hippocampal neurons. In vivo, PCDH19 downregulation impairs migration, orientation and dendritic arborization of CA1 hippocampal neurons and increases rat seizure susceptibility. In sum, these data indicate a role for PCDH19 in GABAergic transmission as well as migration and morphological maturation of neurons.


Assuntos
Caderinas/metabolismo , Moduladores GABAérgicos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Animais , Células COS , Chlorocebus aethiops , Epilepsia/genética , Feminino , Células HEK293 , Hipocampo/citologia , Humanos , Potenciais Pós-Sinápticos Inibidores , Plasticidade Neuronal , Protocaderinas , Ratos , Ratos Sprague-Dawley , Convulsões/metabolismo
4.
Mol Cell Neurosci ; 91: 76-81, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29631019

RESUMO

Tetraspanins are a family of proteins largely expressed in mammals. These proteins share very similar structures and are involved in several biological processes spanning from the immune system to cancer growth regulation. Moreover, tetraspanins are scaffold proteins that are able to interact with each other and with a subset of proteins involved in the regulation of the central nervous system, including synapse formation, function and plasticity. In this review, we will focus on the analysis of the literature on tetraspanins, highlighting their involvement in synapse formation and function through direct or indirect modulation of synaptic proteins.


Assuntos
Sinapses/metabolismo , Tetraspaninas/metabolismo , Animais , Humanos , Plasticidade Neuronal , Transporte Proteico , Receptores de Neurotransmissores/metabolismo , Sinapses/fisiologia , Tetraspaninas/genética
5.
Proc Natl Acad Sci U S A ; 113(13): 3651-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976584

RESUMO

Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos Deletion or reduction of neuro LSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO)mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress.


Assuntos
Emoções/fisiologia , Genes Precoces , Histona Desmetilases/fisiologia , Processamento Alternativo , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Epigênese Genética , Genes fos , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Plasticidade Neuronal , Fenótipo , Fator de Resposta Sérica/fisiologia , Estresse Psicológico , Transcrição Gênica
6.
Hum Mol Genet ; 25(23): 5198-5211, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742778

RESUMO

Among the X-linked genes associated with intellectual disability, Oligophrenin-1 (OPHN1) encodes for a Rho GTPase-activating protein, a key regulator of several developmental processes, such as dendrite and spine formation and synaptic activity. Inhibitory interneurons play a key role in the development and function of neuronal circuits. Whether a mutation of OPHN1 can affect morphology and synaptic properties of inhibitory interneurons remains poorly understood. To address these open questions, we studied in a well-established mouse model of X-linked intellectual disability, i.e. a line of mice carrying a null mutation of OPHN1, the development and function of adult generated inhibitory interneurons in the olfactory bulb. Combining quantitative morphological analysis and electrophysiological recordings we found that the adult generated inhibitory interneurons were dramatically reduced in number and exhibited a higher proportion of filopodia-like spines, with the consequences on their synaptic function, in OPHN1 ko mice. Furthermore, we found that olfactory behaviour was perturbed in OPHN1 ko mice. Chronic treatment with a Rho kinase inhibitor rescued most of the defects of the newly generated neurons. Altogether, our data indicated that OPHN1 plays a key role in regulating the number, morphology and function of adult-born inhibitory interneurons and contributed to identify potential therapeutic targets.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas Ativadoras de GTPase/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Animais , Dendritos/efeitos dos fármacos , Dendritos/genética , Dendritos/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/patologia , Interneurônios/efeitos dos fármacos , Interneurônios/patologia , Camundongos Knockout , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética
7.
Brain ; 140(9): 2265-2272, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335015

RESUMO

Loss of function mutations in the gene PARK2, which encodes the protein parkin, cause autosomal recessive juvenile parkinsonism, a neurodegenerative disease characterized by degeneration of the dopaminergic neurons localized in the substantia nigra pars compacta. No therapy is effective in slowing disease progression mostly because the pathogenesis of the disease is yet to be understood. From accruing evidence suggesting that the protein parkin directly regulates synapses it can be hypothesized that PARK2 gene mutations lead to early synaptic damage that results in dopaminergic neuron loss over time. We review evidence that supports the role of parkin in modulating excitatory and dopaminergic synapse functions. We also discuss how these findings underpin the concept that autosomal recessive juvenile parkinsonism can be primarily a synaptopathy. Investigation into the molecular interactions between parkin and synaptic proteins may yield novel targets for pharmacologic interventions.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Doença de Parkinson/fisiopatologia , Transmissão Sináptica/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Humanos , Mutação , Degeneração Neural/genética , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética
8.
Cereb Cortex ; 27(11): 5369-5384, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968657

RESUMO

Intellectual disability affects 2-3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1-GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1-GluA2 binding restored synaptic function in Tm4sf2-/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2-/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Psicotrópicos/farmacologia , Receptores de AMPA/metabolismo , Regulação Alostérica , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Deficiência Intelectual/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
9.
Cereb Cortex ; 27(3): 2226-2248, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27005990

RESUMO

Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Epilepsia/enzimologia , Neurônios/enzimologia , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/genética , Epilepsia/patologia , Medo/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
10.
Int J Mol Sci ; 19(6)2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925821

RESUMO

Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Proteínas rho de Ligação ao GTP/genética , Animais , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina , Humanos , Camundongos , Modelos Animais , Neurogênese , Plasticidade Neuronal , Neurônios/patologia , Ratos
11.
Hum Mol Genet ; 24(22): 6530-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26358776

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the IT15 gene that encodes the protein huntingtin (htt). Evidence shows that mutant htt causes mitochondrial depolarization and fragmentation, but the underlying molecular mechanism has yet to be clarified. Bax/Bak and BNip3 are pro-apoptotic members of the Bcl-2 family protein whose activation triggers mitochondrial depolarization and fragmentation inducing cell death. Evidence suggests that Bax/Bak and BNip3 undergo activation upon mutant htt expression but whether these proteins are required for mitochondrial depolarization and fragmentation induced by mutant htt is unclear. Our results show that BNip3 knock-out cells are protected from mitochondrial damage and cell death induced by mutant htt whereas Bax/Bak knock-out cells are not. Moreover, deletion of BNip3 C-terminal transmembrane domain, required for mitochondrial targeting, suppresses mitochondrial depolarization and fragmentation in a cell culture model of HD. Hence, our results suggest that changes in mitochondrial morphology and transmembrane potential, induced by mutant htt protein, are dependent and linked to BNip3 and not to Bax/Bak activation. These results provide new compelling evidence that underlies the molecular mechanisms by which mutant htt causes mitochondrial dysfunction and cell death, suggesting BNip3 as a potential target for HD therapy.


Assuntos
Doença de Huntington/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Técnicas de Introdução de Genes , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Potencial da Membrana Mitocondrial , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , Proteína X Associada a bcl-2/genética
12.
Cereb Cortex ; 26(10): 3879-88, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166172

RESUMO

The capacity to guarantee the proper excitatory/inhibitory balance is one of the most critical steps during early development responsible for the correct brain organization, function, and plasticity. GABAergic neurons guide this process leading to the right structural organization, brain circuitry, and neuronal firing. Here, we identified the ataxia telangiectasia mutated (ATM), a serine/threonine protein kinase linked to DNA damage response, as crucial in regulating neurotransmission. We found that reduced levels of ATM in the hippocampal neuronal cultures produce an excitatory/inhibitory unbalance toward inhibition as indicated by the higher frequency of miniature inhibitory postsynaptic current events and an increased number of GABAergic synapses. In vivo, the increased inhibition still persists and, even if a higher excitation is also present, a reduced neuronal excitability is found as indicated by the lower action potential frequency generated in response to high-current intensity stimuli. Finally, we found an elevated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in heterozygous hippocampi associated with lower expression levels of the ERK1/2 phosphatase PP1. Given that the neurodegenerative condition associated with genetic mutations in the Atm gene, ataxia telangiectasia, presents a variable phenotype with impairment in cognition, our molecular findings provide a logical frame for a more clear comprehension of cognitive defects in the pathology, opening to novel therapeutic strategies.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/citologia , Hipocampo/embriologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/citologia , Fosforilação , Simportadores/metabolismo , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/administração & dosagem , Cotransportadores de K e Cl-
13.
Glia ; 64(8): 1437-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270750

RESUMO

The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460.


Assuntos
Transporte Biológico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nexinas de Classificação/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/patologia , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocitose/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglia/patologia , Nexinas de Classificação/deficiência , Nexinas de Classificação/genética
14.
J Neurosci ; 34(27): 9088-95, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24990929

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein implicated in RNA metabolism. Here, we investigated the role of hnRNP K in synapse function. We demonstrated that hnRNP K regulates dendritic spine density and long-term potentiation (LTP) in cultured hippocampal neurons from embryonic rats. LTP requires the extracellular signal-regulated kinase (ERK)1/2-mediated phosphorylation and cytoplasmic accumulation of hnRNP K. Moreover, hnRNP K knockdown prevents ERK cascade activation and GluA1-S845 phosphorylation and surface delivery, which are essential steps for LTP. These findings establish hnRNP K as a new critical regulator of synaptic transmission and plasticity in hippocampal neurons.


Assuntos
Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Ribonucleoproteínas/fisiologia , Transmissão Sináptica/fisiologia , Animais , Sinalização do Cálcio , Células Cultivadas , Dendritos/ultraestrutura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Neurônios/ultraestrutura , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Receptores de AMPA/metabolismo , Ribonucleoproteínas/antagonistas & inibidores , Ribonucleoproteínas/genética , Transfecção
15.
Proc Natl Acad Sci U S A ; 109(4): 1323-8, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232691

RESUMO

The integrins are transmembrane receptors for ECM proteins, and they regulate various cellular functions in the central nervous system. In hippocampal neurons, the ß3 integrin subtype is required for homeostatic synaptic scaling of AMPA receptors (AMPARs) induced by chronic activity deprivation. The surface level of ß3 integrin in postsynaptic neurons directly correlates with synaptic strength and the abundance of synaptic GluA2 AMPAR subunit. Although these observations suggest a functional link between ß3 integrin and AMPAR, little is known about the mechanistic basis for the connection. Here we investigate the nature of ß3 integrin and AMPAR interaction underlying the ß3 integrin-dependent control of synaptic AMPAR expression and thus synaptic strength. We show that ß3 integrin and GluA2 subunit form a complex in mouse brain that involves the direct binding between their cytoplasmic domains. In contrast, ß3 integrin associates with GluA1 AMPAR subunit only weakly, and, in a heterologous expression system, the interaction requires the coexpression of GluA2. Surprisingly, in hippocampal pyramidal neurons, expressing ß3 integrin mutants with either increased or decreased affinity for extracellular ligands has no differential effects in elevating excitatory synaptic currents and surface GluA2 levels compared with WT ß3 integrin. Our findings identify an integrin family member, ß3, as a direct interactor of an AMPAR subunit and provide molecular insights into how this cell-adhesion protein regulates the composition of cell-surface AMPARs.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Integrina beta3/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Análise de Variância , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Imunofluorescência , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
16.
J Biol Chem ; 288(7): 5241-56, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23288840

RESUMO

GPR17 is a G-protein-coupled receptor that is activated by two classes of molecules: uracil-nucleotides and cysteinyl-leukotrienes. GPR17 is required for initiating the differentiation of oligodendrocyte precursors but has to be down-regulated to allow cells to undergo terminal maturation. Although a great deal has been learned about GPR17 expression and signaling, no information is currently available about the trafficking of native receptors after the exposure of differentiating oligodendrocytes to endogenous agonists. Here, we demonstrate that neuron-conditioned medium induces the transcriptionally mediated, time-regulated expression of GPR17 in Oli-neu, an oligodendrocyte precursor cell line, making these cells suitable for studying the endocytic traffic of the native receptor. Agonist-induced internalization, intracellular trafficking, and membrane recycling of GPR17 were analyzed by biochemical and immunofluorescence assays using an ad hoc-developed antibody against the extracellular N-terminal of GPR17. Both UDP-glucose and LTD(4) increased GPR17 internalization, although with different efficiency. At early time points, internalized GPR17 co-localized with transferrin receptor, whereas at later times it partially co-localized with the lysosomal marker Lamp1, suggesting that a portion of GPR17 is targeted to lysosomes upon ligand binding. An analysis of receptor recycling and degradation demonstrated that a significant aliquot of GPR17 is recycled to the cell surface. Furthermore, internalized GPR17 displayed a co-localization with the marker of the "short loop" recycling endosomes, Rab4, while showing very minor co-localization with the "long loop" recycling marker, Rab11. Our results provide the first data on the agonist-induced trafficking of native GPR17 in oligodendroglial cells and may have implications for both physiological and pathological myelination.


Assuntos
Membrana Celular/metabolismo , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Clonagem Molecular , Endocitose , Humanos , Lisossomos/metabolismo , Camundongos , Modelos Biológicos , Oligodendroglia/citologia , Interferência de RNA , Ratos
17.
J Biol Chem ; 288(47): 33873-33883, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24108129

RESUMO

Mutations in the CACNA1A gene, which encodes the pore-forming α1A subunit of the CaV2.1 voltage-gated calcium channel, cause a number of human neurologic diseases including familial hemiplegic migraine. We have analyzed the functional impact of the E1015K amino acid substitution located in the "synprint" domain of the α1A subunit. This variant was identified in two families with hemiplegic migraine and in one patient with migraine with aura. The wild type (WT) and the E1015K forms of the GFP-tagged α1A subunit were expressed in cultured hippocampal neurons and HEK cells to understand the role of the variant in the transport activity and physiology of CaV2.1. The E1015K variant does not alter CaV2.1 protein expression, and its transport to the cell surface and synaptic terminals is similar to that observed for WT channels. Electrophysiological data demonstrated that E1015K channels have increased current density and significantly altered inactivation properties compared with WT. Furthermore, the SNARE proteins syntaxin 1A and SNAP-25 were unable to modulate voltage-dependent inactivation of E1015K channels. Overall, our findings describe a genetic variant in the synprint site of the CaV2.1 channel which is characterized by a gain-of-function and associated with both hemiplegic migraine and migraine with aura in patients.


Assuntos
Canais de Cálcio Tipo N , Hipocampo , Enxaqueca com Aura , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Terminações Pré-Sinápticas , Adolescente , Adulto , Substituição de Aminoácidos , Animais , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Criança , Feminino , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Transporte de Íons/genética , Masculino , Pessoa de Meia-Idade , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Enxaqueca com Aura/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Coelhos , Ratos , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo
18.
Cell Mol Life Sci ; 70(23): 4411-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23475111

RESUMO

Glutamate ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) mediate most fast excitatory synaptic transmission in the central nervous system. The content and composition of AMPARs in postsynaptic membranes (which determine synaptic strength) are dependent on the regulated trafficking of AMPAR subunits in and out of the membranes. AMPAR trafficking is a key mechanism that drives nascent synapse development, and is the main determinant of both Hebbian and homeostatic plasticity in mature synapses. Hebbian plasticity seems to be the biological substrate of at least some forms of learning and memory; while homeostatic plasticity (also known as synaptic scaling) keeps neuronal circuits stable by maintaining changes within a physiological range. In this review, we examine recent findings that provide further understanding of the role of AMPAR trafficking in synapse maturation, Hebbian plasticity, and homeostatic plasticity.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Homeostase/fisiologia , Humanos , Modelos Neurológicos , Transporte Proteico/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo
19.
J Neurochem ; 126(2): 165-82, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23574039

RESUMO

Psychiatric and neurodegenerative disorders, including intellectual disability, autism spectrum disorders (ASD), schizophrenia (SZ), and Alzheimer's disease, pose an immense burden to society. Symptoms of these disorders become manifest at different stages of life: early childhood, adolescence, and late adulthood, respectively. Progress has been made in recent years toward understanding the genetic substrates, cellular mechanisms, brain circuits, and endophenotypes of these disorders. Multiple lines of evidence implicate excitatory and inhibitory synaptic circuits in the cortex and hippocampus as key cellular substrates of pathogenesis in these disorders. Excitatory/inhibitory balance--modulated largely by dopamine--critically regulates cortical network function, neural network activity (i.e. gamma oscillations) and behaviors associated with psychiatric disorders. Understanding the molecular underpinnings of synaptic pathology and neuronal network activity may thus provide essential insight into the pathogenesis of these disorders and can reveal novel drug targets to treat them. Here, we discuss recent genetic, neuropathological, and molecular studies that implicate alterations in excitatory and inhibitory synaptic circuits in the pathogenesis of psychiatric disorders across the lifespan.


Assuntos
Encéfalo/patologia , Transtornos Mentais/patologia , Rede Nervosa/patologia , Doenças do Sistema Nervoso/patologia , Sinapses/patologia , Animais , Humanos , Sinapses/metabolismo
20.
Hum Mol Genet ; 20(24): 4797-809, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21926414

RESUMO

Mutations of the Interleukin-1-receptor accessory protein like 1 (IL1RAPL1) gene are associated with cognitive impairment ranging from non-syndromic X-linked mental retardation to autism. IL1RAPL1 belongs to a novel family of IL1/Toll receptors, which is localized at excitatory synapses and interacts with PSD-95. We previously showed that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling c-Jun N-terminal kinase activity and PSD-95 phosphorylation. Here, we show that the IgG-like extracellular domains of IL1RAPL1 induce excitatory pre-synapse formation by interacting with protein tyrosine phosphatase delta (PTPδ). We also found that IL1RAPL1 TIR domains interact with RhoGAP2, which is localized at the excitatory post-synaptic density. More interestingly, the IL1RAPL1/PTPδ complex recruits RhoGAP2 at excitatory synapses to induce dendritic spine formation. We also found that the IL1RAPL1 paralog, IL1RAPL2, interacts with PTPδ and induces excitatory synapse and dendritic spine formation. The interaction of the IL1RAPL1 family of proteins with PTPδ and RhoGAP2 reveals a pathophysiological mechanism of cognitive impairment associated with a novel type of trans-synaptic signaling that regulates excitatory synapse and dendritic spine formation.


Assuntos
Quimerina 1/metabolismo , Genes Ligados ao Cromossomo X , Deficiência Intelectual/genética , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sinapses/metabolismo , Animais , Células COS , Chlorocebus aethiops , Análise por Conglomerados , Espinhas Dendríticas/metabolismo , Células HEK293 , Humanos , Proteína Acessória do Receptor de Interleucina-1/química , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA