Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(3): e21362, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33629768

RESUMO

Friedreich ataxia (FRDA) is a neurodegenerative disease resulting from a severe decrease of frataxin (FXN). Most patients carry a GAA repeat expansion in both alleles of the FXN gene, whereas a small fraction of them are compound heterozygous for the expansion and a point mutation in the other allele. FXN is involved in the mitochondrial biogenesis of the FeS-clusters. Distinctive feature of FRDA patient cells is an impaired cellular respiration, likely due to a deficit of key redox cofactors working as electrons shuttles through the respiratory chain. However, a definite relationship between FXN levels, FeS-clusters assembly dysregulation and bioenergetics failure has not been established. In this work, we performed a comparative analysis of the mitochondrial phenotype of cell lines from FRDA patients, either homozygous for the expansion or compound heterozygotes for the G130V mutation. We found that, in healthy cells, FXN and two key proteins of the FeS-cluster assembly machinery are enriched in mitochondrial cristae, the dynamic subcompartment housing the respiratory chain. On the contrary, FXN widely redistributes to the matrix in FRDA cells with defects in respiratory supercomplexes assembly and altered respiratory function. We propose that this could be relevant for the early mitochondrial defects afflicting FRDA cells and that perturbation of mitochondrial morphodynamics could in turn be critical in terms of disease mechanisms.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/biossíntese , Metabolismo Energético , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/fisiologia , Membranas Mitocondriais/metabolismo , Linhagem Celular , Ataxia de Friedreich/patologia , Humanos , Proteínas de Ligação ao Ferro/genética , Membranas Mitocondriais/patologia , Frataxina
2.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348670

RESUMO

Frataxin is a highly conserved protein whose deficiency results in the neurodegenerative disease Friederich's ataxia. Frataxin's actual physiological function has been debated for a long time without reaching a general agreement; however, it is commonly accepted that the protein is involved in the biosynthetic iron-sulphur cluster (ISC) machinery, and several authors have pointed out that it also participates in iron homeostasis. In this work, we use site-directed spin labeling coupled to electron paramagnetic resonance (SDSL EPR) to add new information on the effects of ferric and ferrous iron binding on the properties of human frataxin in vitro. Using SDSL EPR and relating the results to fluorescence experiments commonly performed to study iron binding to FXN, we produced evidence that ferric iron causes reversible aggregation without preferred interfaces in a concentration-dependent fashion, starting at relatively low concentrations (micromolar range), whereas ferrous iron binds without inducing aggregation. Moreover, our experiments show that the ferrous binding does not lead to changes of protein conformation. The data reported in this study reveal that the currently reported binding stoichiometries should be taken with caution. The use of a spin label resistant to reduction, as well as the comparison of the binding effect of Fe2+ in wild type and in the pathological D122Y variant of frataxin, allowed us to characterize the Fe2+ binding properties of different protein sites and highlight the effect of the D122Y substitution on the surrounding residues. We suggest that both Fe2+ and Fe3+ might play a relevant role in the context of the proposed FXN physiological functions.


Assuntos
Dicroísmo Circular/métodos , Compostos Férricos/química , Compostos Ferrosos/química , Proteínas de Ligação ao Ferro/química , Ferro/química , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Concentração de Íons de Hidrogênio , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência/métodos , Frataxina
3.
Chem Sci ; 15(10): 3596-3609, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455019

RESUMO

In nature, light-driven water oxidation (WO) catalysis is performed by photosystem II via the delicate interplay of different cofactors positioned in its protein scaffold. Artificial systems for homogeneous photocatalytic WO are based on small molecules that often have limited solubility in aqueous solutions. In this work, we alleviated this issue and present a cobalt-based WO-catalyst containing artificial metalloenzyme (ArM) that is active in light-driven, homogeneous WO catalysis in neutral-pH aqueous solutions. A haem-containing electron transfer protein, cytochrome B5 (CB5), served to host a first-row transition-metal-based WO catalyst, CoSalen (CoIISalen, where H2Salen = N,N'-bis(salicylidene)ethylenediamine), thus producing an ArM capable of driving photocatalytic WO. The CoSalen ArM formed a water-soluble pre-catalyst in the presence of [Ru(bpy)3](ClO4)2 as photosensitizer and Na2S2O8 as the sacrificial electron acceptor, with photocatalytic activity similar to that of free CoSalen. During photocatalysis, the CoSalen-protein interactions were destabilized, and the protein partially unfolded. Rather than forming tens of nanometer sized CoOx nanoparticles as free CoSalen does under photocatalytic WO conditions, the CB5 : CoSalen ArM showed limited protein cross-linking and remained soluble. We conclude that a weak, dynamic interaction between a soluble cobalt species and apoCB5 was formed, which generated a catalytically active adduct during photocatalysis. A detailed analysis was performed on protein stability and decomposition processes during the harsh oxidizing reaction conditions of WO, which will serve for the future design of WO ArMs with improved activity and stability.

4.
Chem Sci ; 14(42): 11840-11849, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920352

RESUMO

In this contribution, we describe a post-assembly modification approach to selectively coordinate transition metals in Pd12L24 cuboctahedra. The herein reported approach involves the preparation of Pd12L24 nanospheres with protonated nitrogen donor ligands that are covalently linked at the interior. The so obtained Pd12(LH+)24 nanospheres are shown to be suitable for coordinative post-modification after deprotection by deprotonation. Selective formation of tetra-coordinated MB in Pd12MB6L24, tri-coordinated MB in Pd12MB8L24 nanospheres and two-coordinated MB in Pd12MB12L24 nanospheres is achieved as a result of different nitrogen donor ligands. A combination of pulsed EPR spectroscopy (DEER) to measure Cu-Cu distances in the different spheres, NMR studies and computational investigations, support the presence of the complexes at precise locations of the Pd12MB6L24 nanosphere. The general post-assembly modification methodology can be extended using other transition metal precursors or supramolecular systems and can guide precise formation and investigation of novel transition metal-complex containing nanospheres with well-defined composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA