Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 71(1): 185-97, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19007414

RESUMO

DNA polymerase kappa (Pol kappa) is a low-fidelity polymerase that has the ability to bypass several types of lesions. The biological role of this enzyme, a member of the DinB subfamily of Y-family DNA polymerases, has remained elusive. In this report, we studied one of the two copies of Pol kappa from the protozoan Trypanosoma cruzi (TcPol kappa). The role of this TcPol kappa copy was investigated by analysing its subcellular localization, its activities in vitro, and performing experiments with parasites that overexpress this polymerase. The TcPOLK sequence has the N-terminal extension which is present only in eukaryotic DinB members, but its C-terminal region is more similar to prokaryotic and archaeal counterparts since it lacks C(2)HC motifs and PCNA interaction domain. Our results indicate that in contrast to its previously described orthologues, this polymerase is localized to mitochondria. The overexpression of TcPOLK increases T. cruzi resistance to hydrogen peroxide, and in vitro polymerization assays revealed that TcPol kappa efficiently bypasses 8-oxoguanine lesions. Remarkably, our results also demonstrate that the DinB subfamily of polymerases can participate in homologous recombination, based on our findings that TcPol kappa increases T. cruzi resistance to high doses of gamma irradiation and zeocin and can catalyse DNA synthesis within recombination intermediates.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/análogos & derivados , Mitocôndrias/genética , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/genética , Sequência de Aminoácidos , Animais , Dano ao DNA , DNA de Protozoário/genética , DNA Polimerase Dirigida por DNA/genética , Guanina/metabolismo , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Estresse Oxidativo , Proteínas de Protozoários/genética , Recombinação Genética , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
2.
DNA Repair (Amst) ; 73: 78-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470509

RESUMO

Genomes are affected by a wide range of damage, which has resulted in the evolution of a number of widely conserved DNA repair pathways. Most of these repair reactions have been described in the African trypanosome Trypanosoma brucei, which is a genetically tractable eukaryotic microbe and important human and animal parasite, but little work has considered how the DNA damage response operates throughout the T. brucei life cycle. Using quantitative PCR we have assessed damage induction and repair in both the nuclear and mitochondrial genomes of the parasite. We show differing kinetics of repair for three forms of DNA damage, and dramatic differences in repair between replicative life cycle forms found in the testse fly midgut and the mammal. We find that mammal-infective T. brucei cells repair oxidative and crosslink-induced DNA damage more efficiently than tsetse-infective cells and, moreover, very distinct patterns of induction and repair of DNA alkylating damage in the two life cycle forms. We also reveal robust repair of DNA lesions in the highly unusual T. brucei mitochondrial genome (the kinetoplast). By examining mutants we show that nuclear alkylation damage is repaired by the concerted action of two repair pathways, and that Rad51 acts in kinetoplast repair. Finally, we correlate repair with cell cycle arrest and cell growth, revealing that induced DNA damage has strikingly differing effects on the two life cycle stages, with distinct timing of alkylation-induced cell cycle arrest and higher levels of damage induced death in mammal-infective cells. Our data reveal that T. brucei regulates the DNA damage response during its life cycle, a capacity that may be shared by many microbial pathogens that exist in variant environments during growth and transmission.


Assuntos
Dano ao DNA , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/genética , Alquilação , Pontos de Checagem do Ciclo Celular/genética , Adutos de DNA/metabolismo , Reparo do DNA , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Estresse Oxidativo/genética , Rad51 Recombinase/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA