Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 51(4): 2955-2966, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214381

RESUMO

BACKGROUND: FLASH radiotherapy (FLASH-RT) with ultra-high dose rate has yielded promising results in reducing normal tissue toxicity while maintaining tumor control. Planning with single-energy proton beams modulated by ridge filters (RFs) has been demonstrated feasible for FLASH-RT. PURPOSE: This study explored the feasibility of a streamlined pin-shaped RF (pin-RF) design, characterized by coarse resolution and sparsely distributed ridge pins, for single-energy proton FLASH planning. METHODS: An inverse planning framework integrated within a treatment planning system was established to design streamlined pin RFs for single-energy FLASH planning. The framework involves generating a multi-energy proton beam plan using intensity-modulated proton therapy (IMPT) planning based on downstream energy modulation strategy (IMPT-DS), followed by a nested pencil-beam-direction-based (PBD-based) spot reduction process to iteratively reduce the total number of PBDs and energy layers along each PBD for the IMPT-DS plan. The IMPT-DS plan is then translated into the pin-RFs and the single-energy beam configurations for IMPT planning with pin-RFs (IMPT-RF). This framework was validated on three lung cases, quantifying the FLASH dose of the IMPT-RF plan using the FLASH effectiveness model. The FLASH dose was then compared to the reference dose of a conventional IMPT plan to measure the clinical benefit of the FLASH planning technique. RESULTS: The IMPT-RF plans closely matched the corresponding IMPT-DS plans in high dose conformity (conformity index of <1.2), with minimal changes in V7Gy and V7.4 Gy for the lung (<3%) and small increases in maximum doses (Dmax) for other normal structures (<3.4 Gy). Comparing the FLASH doses to the doses of corresponding IMPT-RF plans, drastic reductions of up to nearly 33% were observed in Dmax for the normal structures situated in the high-to-moderate-dose regions, while negligible changes were found in Dmax for normal structures in low-dose regions. Positive clinical benefits were seen in comparing the FLASH doses to the reference doses, with notable reductions of 21.4%-33.0% in Dmax for healthy tissues in the high-dose regions. However, in the moderate-to-low-dose regions, only marginal positive or even negative clinical benefit for normal tissues were observed, such as increased lung V7Gy and V7.4 Gy (up to 17.6%). CONCLUSIONS: A streamlined pin-RF design was developed and its effectiveness for single-energy proton FLASH planning was validated, revealing positive clinical benefits for the normal tissues in the high dose regions. The coarsened design of the pin-RF demonstrates potential advantages, including cost efficiency and ease of adjustability, making it a promising option for efficient production.


Assuntos
Neoplasias , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Órgãos em Risco
2.
Pract Radiat Oncol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032598

RESUMO

PURPOSE: Whole-pelvis (WP) radiation therapy (radiation) improved biochemical relapse-free survival (bRFS) compared with prostate bed (PB)-only radiation in the Radiation Therapy Oncology Group 0534, but was performed in an era prior to positron emission tomography (PET) staging. Separately, 18F-fluciclovine PET/CT-guided postprostatectomy radiation improved 3-year bRFS versus radiation guided by conventional imaging alone. We hypothesized that patients who were changed from WP to PB-only radiation after PET would have bRFS that was: (a) no higher than patients initially planned for PB-only radiation; and (b) lower than patients planned for WP radiation without PET guidance. METHODS AND MATERIALS: We conducted a post hoc analysis of a prospective, randomized trial comparing conventional (arm 1) versus PET-guided (arm 2) postprostatectomy radiation. In arm 2, pre-PET treatment field decisions were recorded and post-PET fields were defined per protocol; pathologic node negative (pN0) without pelvic or extrapelvic PET uptake received PB-only radiation. Three-year bRFS was compared in patients planned for WP with change to PB-only radiation (arm 2 [WP:PB]) vs arm 2 patients planned for PB-only with final radiation to PB-only (arm 2 [PB:PB]) and arm 1 pN0 patients treated with WP radiation (arm 1 [WP]) using the Z test and log-rank test. Demographics were compared using the chi-square test, Fisher exact test, or analysis of variance, as appropriate. RESULTS: We identified 10 arm 2 (WP:PB), 31 arm 2 (PB:PB) and 11 arm 1 (WP) patients. Androgen deprivation was used in 50.0% of arm 2 (WP:PB) and 3.2% of arm 2 (PB:PB) patients, P < .01. Median preradiation prostate-specific antigen was higher in arm 2 (WP:PB) vs arm 2 (PB:PB) patients (0.4 vs 0.2 ng/mL, P = .03); however, there were no significant differences in T stage, Gleason score, or margin positivity. Three-year bRFS was 80% in arm 2 (WP:PB) vs 87.4% in arm 2 (PB:PB), P = .47, respectively. Arm 1(WP) patients had significantly worse 3-year (23%) bRFS vs arm 2 (WP:PB), P < .01. CONCLUSIONS: Patients initially planned for WP radiation with field decision change to PB-only radiation after PET showed (1) no significant difference in 3-year bRFS compared with patients initially planned for PB-only radiation; and (2) improved bRFS compared with patients receiving WP radiation without PET guidance. PET-guided volume de-escalation in selected patients may be 1 approach to mitigating toxicity without compromising outcomes.

3.
Int J Part Ther ; 13: 100111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39070664

RESUMO

Purpose: Rectal toxicity after prostate cancer (PCa) radiation therapy (RT) may be greater with protons compared with photon intensity-modulated RT, perhaps due to lateral penumbra and end-of-range uncertainty. Rectal spacers (RSs) have been shown to mitigate RT-associated acute/late rectal toxicity in men treated with photons. The relative benefit of RS in men treated with protons versus photons is unknown. We hypothesize that RS will confer greater bowel toxicity benefits in PCa treated with protons versus photons. Materials and Methods: We conducted a single institution, retrospective review of men receiving photon intensity-modulated RT or pencil-beam scanning proton RT for localized PCa. Four cohorts were compared: photon with or without RS, and proton with or without RS. Acute (<3 months), late (≥3 months), and most recent toxicity were compared among the 4 cohorts. The cumulative incidence of physician-reported grade 1 to 2 gastrointestinal (GI) toxicity (common terminology criteria for adverse events V5.0) was compared using χ2 or Fisher exact test. Patient-reported toxicity was evaluated using the International Prostate Expanded Prostate Composite Index-Clinical Practice and compared using linear mixed modeling. Results: In total, 164 patients were eligible for analysis: 38 photons without RS, 50 photons with RS, 26 protons without RS, and 50 protons with RS. The median follow-up was 17.6 months. In proton patients, acute (6.12% vs 30.77%, P = .009) and most recent (4.26% vs 26.09%, P = .01) G1-2 GI toxicity was lower with versus without RS. In photon patients, there were no significant differences in toxicity with versus without RS. No significant differences in patient-reported outcomes were observed with versus without RS in photon or proton groups. Conclusion: The rectal spacer was associated with lower G1-2 acute and most recent GI toxicity in men treated with protons; this difference was not observed in men treated with photons. While this study is limited by sample size, a relatively greater benefit of RS with proton versus photon therapy was observed.

4.
J Radiosurg SBRT ; 9(2): 121-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39087059

RESUMO

Purpose: To review our initial experience with proton-based SBRT to evaluate the planning outcomes and initial patient tolerance of treatment. Patients and methods: From Sep. 2019 to Dec. 2020, 52 patients were treated with proton SBRT to 62 lesions. Fractionation varied by indication and site with a median of 5 fractions and median fractional dose of 8 Gy. Planning outcomes, including plan heterogeneity, conformity, and PTV volume receiving 100% of the prescription dose (PTV V100%) were evaluated. Acute toxicities were prospectively recorded, and patient reported outcomes were assessed prior to and at completion of treatment using the MD Anderson Symptom Inventory (MDASI) and EQ-5D5L visual analogue score (VAS). Results: All treated patients completed their course of proton-based SBRT. The mean conformity index was 1.05 (range 0.51-1.48). R50% values were comparable to ideal photon parameters. PTV V100% was 89.9% on average (40.44% - 99.76%). 5 patients (10%) required plan modification due to setup or tumor changes. No patients developed a new grade 3 or greater toxicity during treatment. Comparing pretreatment to end of treatment timepoints, there was a significant improvement in the mean VAS (65 to 75, p = 0.014), with no significant change in the mean MDASI symptom (1.7, 1.8; p = 0.79) or interference (2.3, 2.4; p = 0.452) scores. Conclusion: Proton-based SBRT can achieve dosimetric goals required by major clinical photon trials. It was well-tolerated with no decrement in patient reported outcomes and a mean 10-point improvement in VAS at the conclusion of SBRT. Further follow-up is necessary for tumor control and late effects analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA