Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cancer Invest ; 38(6): 349-355, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32441531

RESUMO

Background: Meningiomas represent ∼30% of primary central nervous system (CNS) tumors. Although advances in surgery and radiotherapy have significantly improved survival, there remains an important subset of patients whose tumors have more aggressive behavior and are refractory to conventional therapy. Recent advances in molecular genetics and epigenetics suggest that this aggressive behavior may be due to the deletion of the DNA repair and tumor suppressor gene, CHEK2, neurofibromatosis Type 2 (NF2) mutation on chromosome 22q12, and genetic abnormalities in multiple RTKs including FGFRs. Management of higher-grade meningiomas, such as anaplastic meningiomas (AM: WHO grade III), is truly challenging and there isn't an established chemotherapy option. We investigate the effect of active multi tyrosine receptor kinase inhibitor Dovitinib at stopping AM cell growth in in vitro with either frequent codeletion or mutated CHEK2 and NF2 gene.Methods: Treatment effects were assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, western blot analysis, caspases assay, and DNA fragmentation assay.Results: Treatment of CH157MN and IOMM-Lee cells with Dovitinib suppressed multiple angiokinases-mainly FGFRs, leading to suppression of downstream signaling by RAS-RAF-MAPK molecules and PI3K-AKT molecules which are involved in cell proliferation, cell survival, and tumor invasion. Furthermore, Dovitinib induced apoptosis via downregulation of survival proteins (Bcl-XL), and over-expression of apoptotic factors (Bax and caspase-3) regardless of CHEK2 and NF2 mutation status.Conclusions: This study establishes the groundwork for the development of Dovitinib as a therapeutic agent for high-grade AM with either frequent codeletion or mutated CHEK2 and NF2, an avenue with high translational potential.


Assuntos
Benzimidazóis/farmacologia , Quinase do Ponto de Checagem 2/genética , Meningioma/tratamento farmacológico , Neurofibromina 2/genética , Quinolonas/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Meningioma/genética , Meningioma/patologia , Mutação/genética , Estadiamento de Neoplasias , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína bcl-X/genética
2.
Neurocase ; 24(1): 7-9, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29310506

RESUMO

Agreeing with Damasio's statement defining the "process" of consciousness, we propose the self as created by mind-based knowledge and a combination of images of an organism's intentional motor responses interacting with its environment. The lemniscal system, with plastic capabilities, manages gravity in voluntary movement. The spinal segment motor reflex represents the schema of gravity-managing neuronal activity, and it can become "nested" in cortical areas participating in consciousness-building, allowing consideration of the brain as a hyper-evolved nervous system segment harboring atavic spinal organization. Consciousness' capability to change itself makes humans co-participants in their own mental and consciousness evolution.


Assuntos
Encéfalo/citologia , Estado de Consciência/fisiologia , Internato e Residência , Neurônios/fisiologia , Neurocirurgia , Encéfalo/fisiologia , Humanos
4.
Childs Nerv Syst ; 33(3): 429-436, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27942918

RESUMO

BACKGROUND: Immunotherapy can be an effective treatment for pediatric medulloblastoma (MB) patients. However, major subpopulations do not respond to immunotherapy, due to the lack of antigenic mutations or the immune-evasive properties of MB cells. Clinical observations suggest that radiation therapy (RT) may expand the therapeutic reach of immunotherapy. The aim of the present investigation is to study the effect of low-dose X-ray radiation (LDXR, 1 Gy) on the functional immunological responses of MB cells (DAOY, D283, and D341). METHODS: Induction of MB cell death was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Production of reactive oxygen species (ROS) was measured by fluorescent probes. Changes in the expression of  human leukocyte antigen (HLA) molecules and caspase-3 activities during treatment were analyzed using Western blotting and caspase-3 assay. RESULTS: Western blot analysis demonstrated that LDXR upregulated the expression of HLA class I and HLA II molecules by more than 20% compared with control and high-dose (12 Gy) groups in vitro. Several of these HLA subtypes, such as MAGE C1, CD137, and ICAM-1, have demonstrated upregulation. In addition, LDXR increases ROS production in association with phosphorylation of NF-κB and cell surface expression of mAb target molecules (HER2 and VEGF). These data suggest that a combined LDXR and mAb therapy can create a synergistic effect in vitro. CONCLUSION: These results suggest that LDXR modulates HLA molecules, leading to alterations in T-cell/tumor-cell interaction and enhancement of T-cell-mediated MB cell death. Also, low-dose radiotherapy combined with monoclonal antibody therapy may one day augment the standard treatment for MB, but more investigation is needed to prove its utility as a new therapeutic combination for MB patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Antígenos HLA/metabolismo , Meduloblastoma/metabolismo , Radiação , Ligante 4-1BB/metabolismo , Análise de Variância , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos HLA/imunologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Meduloblastoma/patologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-2/imunologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/imunologia
5.
Tumour Biol ; 37(6): 7525-34, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26684801

RESUMO

Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.


Assuntos
Raios gama/efeitos adversos , Glioblastoma/radioterapia , Necrose/metabolismo , Necrose/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Western Blotting , Caspases , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Técnicas Imunoenzimáticas , Masculino , Necrose/etiologia , Lesões por Radiação/etiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Tumour Biol ; 36(9): 7027-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25864108

RESUMO

Recurrent meningiomas constitute an uncommon but significant problem after standard (surgery and radiation) therapy failure. Current chemotherapies (hydroxyurea, RU-486, and interferon-α) are only of marginal benefit. There is an urgent need for more effective treatments for meningioma patients who have failed surgery and radiation therapy. Limonin, Tangeritin, Zerumbone, 6-Gingerol, Ganoderic Acid A, and Ganoderic Acid DM are some of the plant derivatives that have anti-tumorgenic properties and cause cell death in meningioma cells in vitro. Due to its ease of administration, long-term tolerability, and low incidence of long-term side effects, we explored its potential as a therapeutic agent against meningiomas by examining their efficacy in vitro against meningioma cells. Treatment effects were assessed using MTT assay, Western blot analysis, caspases assay, and DNA fragmentation assay. Results indicated that treatments of IOMM-Lee and CH157MN meningioma cells with Limonin, Tangeritin, Zerumbone, 6-Gingerol, Ganoderic Acid A, and Ganoderic Acid DM induced apoptosis with enhanced phosphorylation of glycogen synthase kinase 3 ß (GSK3ß) via inhibition of the Wnt5/ß-catenin pathway. These drugs did not induce apoptosis in normal human neurons. Other events in apoptosis included downregulation of tetraspanin protein (TSPAN12), survival proteins (Bcl-XL and Mcl-1), and overexpression apoptotic factors (Bax and caspase-3). These results provide preliminary strong evidence that medicinal plants containing Limonin, Tangeritin, 6-Gingerol, Zerumbone, Ganoderic Acid A, and Ganoderic Acid DM can be applied to high-grade meningiomas as a therapeutic agent, and suggests that further in vivo studies are necessary to explore its potential as a therapeutic agent against malignant meningiomas.


Assuntos
Catecóis/administração & dosagem , Álcoois Graxos/administração & dosagem , Flavonas/administração & dosagem , Ácidos Heptanoicos/administração & dosagem , Lanosterol/análogos & derivados , Limoninas/administração & dosagem , Meningioma/tratamento farmacológico , Sesquiterpenos/administração & dosagem , Triterpenos/administração & dosagem , Apoptose/efeitos dos fármacos , Catecóis/química , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Álcoois Graxos/química , Flavonas/química , Quinase 3 da Glicogênio Sintase/biossíntese , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Ácidos Heptanoicos/química , Humanos , Lanosterol/administração & dosagem , Lanosterol/química , Limoninas/química , Meningioma/genética , Meningioma/patologia , Sesquiterpenos/química , Triterpenos/química , Via de Sinalização Wnt/efeitos dos fármacos
7.
World Neurosurg ; 182: 208-213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061539

RESUMO

BACKGROUND: Exoscope use in spinal neurosurgery has become a promising surgical option providing enhanced operative field visibility and ergonomics. However, data on its use in spine surgery are underreported in the literature. We aimed to assess the intraoperative outcomes in exoscope-assisted spine surgery compared with similar procedures performed using the operative microscope. METHODS: A retrospective review was performed of all spinal surgeries performed using an exoscope and, subsequently, an equal number of operative microscope cases performed by 2 senior surgeons at a single institution from 2016 to 2023. The variables included demographics, clinical presentation, surgical treatment, and operative outcomes. RESULTS: A total of 123 exoscope spinal surgeries were performed on 116 unique patients with a mean age of 67 ± 14 years, of whom 60 (52%) were women. The microscope group included 126 surgeries on 120 unique patients with a mean age of 62 ± 14 years, of whom 53 (45%) were women. The mean blood loss (28 mL vs. 132 mL; P = 0.0009), operative time (83 minutes vs. 103 minutes; P = 0.006), and length of stay (1.04 days vs. 1.73 days; P = 0.02) were significantly less for the exoscope group than for the microscope group. CONCLUSIONS: The use of the exoscope resulted in a shorter operative time, less blood loss, a shorter length of stay, and favorable clinical outcomes compared with the use of the operative microscope. Neurosurgeons should consider this seemingly efficacious and ergonomically favorable visual technology for spinal surgeries.


Assuntos
Neurocirurgia , Procedimentos Neurocirúrgicos , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Procedimentos Neurocirúrgicos/métodos , Coluna Vertebral/cirurgia , Microscopia , Microcirurgia/métodos
8.
J Neurooncol ; 114(1): 43-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754639

RESUMO

Glioblastoma, the most lethal brain tumor, remains incurable despite aggressive chemotherapy and surgical interventions. New chemotherapeutics for glioblastoma have been explored in preclinical models and some agents have reached the clinical setting. However, success rates are not significant. Previous investigations involving diallyl trisulfide (DATS), a garlic compound, indicated significant anti-cancer effects in glioblastoma in vitro. DATS has also been shown to inhibit histone deacetylase activity and impede glioblastoma tumor progression. We hypothesized that DATS would block ectopic U87MG tumor by multiple pro-apoptotic pathways via inhibiting histone deacetylase (HDAC). To prove this, we developed ectopic U87MG tumors in SCID mice and treated them daily with intraperitoneal injections of DATS for 7 days. Results indicated that DATS (10 µg/kg-10 mg/kg) dose-dependently reduced tumor mass and number of mitotic cells within tumors. Histological and biochemical assays demonstrated that DATS reduced mitosis in tumors, decreased HDAC activity, increased acetylation of H3 and H4, inhibited cell cycle progression, decreased pro-tumor markers (e.g., survivin, Bcl-2, c-Myc, mTOR, EGFR, VEGF), promoted apoptotic factors (e.g., bax, mcalpian, active caspase-3), and induced DNA fragmentation. Our data also demonstrated an increase in p21Waf1 expression, which correlated with increased p53 expression and MDM2 degradation following DATS treatment. Finally, histological assessment and enzyme assays showed that even the highest dose of DATS did not negatively impact hepatic function. Collectively, our results clearly demonstrated that DATS could be an effective therapeutic agent in preventing tumor progression and inducing apoptosis in human glioblastoma in vivo, without impairing hepatic function.


Assuntos
Compostos Alílicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Histona Desacetilases/metabolismo , Sulfetos/uso terapêutico , Análise de Variância , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Marcação In Situ das Extremidades Cortadas , Fígado/patologia , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Metab Brain Dis ; 28(3): 355-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23543207

RESUMO

Glioblastoma is the most common aggressive, highly glycolytic, and lethal brain tumor. In fact, it is among the most commonly diagnosed lethal malignancies, with thousands of new cases reported in the United States each year. Glioblastoma's lethality is derived from a number of factors including highly active pro-mitotic and pro-metastatic pathways. Two factors increasingly associated with the intracellular signaling and transcriptional machinery required for such changes are anaplastic lymphoma kinase (ALK) and the hepatocyte growth factor receptor (HGFR or, more commonly MET). Both receptors are members of the receptor tyrosine kinase (RTK) family, which has itself gained much attention for its role in modulating mitosis, migration, and survival in cancer cells. ALK was first described as a vital oncogene in lymphoma studies, but it has since been connected to many carcinomas, including non-small cell lung cancer and glioblastoma. As the receptor for HGF, MET has also been highly characterized and regulates numerous developmental and wound healing events which, when upregulated in cancer, can promote tumor progression. The wealth of information gathered over the last 30 years regarding these RTKs suggests three downstream cascades that depend upon activation of STAT3, Ras, and AKT. This review outlines the significance of ALK and MET as they relate to glioblastoma, explores the significance of STAT3, Ras, and AKT downstream of ALK/MET, and touches on the potential for new chemotherapeutics targeting ALK and MET to improve glioblastoma patient prognosis.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
10.
Neurochem Res ; 37(6): 1192-200, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22228201

RESUMO

Glioblastoma multiforme (GBM) is recognized as the most common and lethal form of central nervous system cancer. Currently used surgical techniques, chemotherapeutic agents, and radiotherapy strategies have done very little in extending the life expectancies of patients diagnosed with GBM. The difficulty in treating this malignant disease lies both in its inherent complexity and numerous mechanisms of drug resistance. In this review, we summarize several of the primary mechanisms of drug resistance. We reviewed available published literature in the English language regarding drug resistance in glioblastoma. The reasons for drug resistance in glioblastoma include drug efflux, hypoxic areas of tumor cells, cancer stem cells, DNA damage repair, and miRNAs. Many potential therapies target these mechanisms, including a series of investigated alternative and plant-derived agents. Future research and clinical trials in glioblastoma patients should pursue combination of therapies to help combat drug resistance. The emerging new data on the potential of plant-derived therapeutics should also be closely considered and further investigated.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Compostos Alílicos/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Terapia Combinada , Metilases de Modificação do DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/efeitos dos fármacos , Flavonoides/uso terapêutico , Alho/química , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , MicroRNAs/uso terapêutico , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , RNA Interferente Pequeno/uso terapêutico , Retinoides/uso terapêutico , Sulfetos/uso terapêutico , Proteínas Supressoras de Tumor/efeitos dos fármacos
11.
J Neurosurg ; : 1-8, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180701

RESUMO

Phanor Leonidas Perot Jr., MD, PhD (1928-2011), was a gifted educator and pioneer of academic neurosurgery in South Carolina. As neurosurgical resident and then as a junior faculty member at the Montreal Neurological Institute, he advanced understandings of both epilepsy and spinal cord injury under Wilder Penfield, William Cone, and Theodore Rasmussen. In 1968, he moved to Charleston to lead neurosurgery. From his time spent with master physicians such as Isidor Ravdin and Wilder Penfield, Perot himself became "the ultimate teacher." His research spanned the fields of epilepsy to torticollis to spinal trauma, focusing the most on the basic pathophysiology of spinal cord damage elucidated through somatosensory evoked potentials. His research was distinguished by generous grant funding. By the time he stepped down as chairman in 1997, the division of neurosurgery had become a department and he had served as president of the American Academy of Neurological Surgery and the Society of Neurological Surgeons. Perot taught prolifically at the bedside, and considered the residency program at the Medical University of South Carolina his greatest achievement. Although Dr. Perot never fully retired, he also enjoyed active hobbies of fly-fishing, traveling, and hunting, until his death on February 2, 2011. He influenced many and earned his role in history as the father of academic neurosurgery in South Carolina.

12.
World Neurosurg ; 161: e61-e74, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35032716

RESUMO

BACKGROUND: Glioblastoma (GB) is an aggressive tumor showing extensive intertumoral and intratumoral heterogeneity. Several possible reasons contribute to the historical inability to develop effective therapeutic strategies for treatment of GB. One such challenge is the inability to consistently procure high-quality biologically preserved specimens for use in molecular research and patient-derived xenograft model development. No scientifically derived standardized method exists for intraoperative tissue collection specifically designed with the fragility of RNA in mind. METHODS: In this investigation, we set out to characterize matched specimens from 6 GB patients comparing the traditional handling and collection processes of intraoperative tissue used in most neurosurgical operating rooms versus an automated resection, collection, and biological preservation system (APS) which captures, preserves, and biologically maintains tissue in a prescribed and controlled microenvironment. Matched specimens were processed in parallel at various time points and temperatures, evaluating viability, RNA and protein concentrations, and isolation of GB cell lines. RESULTS: We found that APS-derived GB slices stored in an APS modified medium remained viable and maintained high-quality RNA and protein concentration for up to 24 hours. CONCLUSIONS: Our results showed that primary GB cell cultures derived in this manner had improved growth over widely used collection and preservation methods. By implementing an automated intraoperative system, we also eliminated inconsistencies in methodology of tissue collection, handling and biological preservation, establishing a repeatable and standardized practice that does not require additional staff or a laboratory technician to manage it.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Projetos Piloto , Preservação Biológica , RNA , Preservação de Tecido/métodos , Microambiente Tumoral
13.
Clin Neurol Neurosurg ; 216: 107218, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367747

RESUMO

Few cases have been reported of the diagnosis and treatment of glioblastoma (GB) during pregnancy. Subsequently, surgical, medical, and obstetrical management of complicated primary central nervous system malignancy in antepartum and postpartum patients remains under-investigated. The authors report the case of a 24-year-old female patient who developed generalized tonic-clonic seizures and focal neurologic deficits. MRI imaging (3T Skyra, Siemens, Erlangen, Germany) revealed an intracranial mass suspicious for malignant tumor and surgical resection under awake sedation was scheduled. The patient was incidentally found to be in her first trimester of pregnancy. Using neuronavigation, neurophysiologic monitoring, and conscious sedation the tumor was debulked successfully and histopathologic analysis confirmed giant cell glioblastoma, WHO Grade IV, 1p/19q intact, IDH wild-type, with NF1 p.Y2285fs and RB1 p.S318fs somatic mutations. Post-surgical oncologic management continued with fractioned radiotherapy and use of the Optune® device. The patient underwent uncomplicated cesarean section at 34-weeks gestation, the child remains healthy and the patient remains disease-disease free at 1-year. Thus, this case presents an approach to management of complicated GBM during first trimester pregnancy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Criança , Humanos , Gravidez , Feminino , Adulto Jovem , Adulto , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/genética , Neoplasias Encefálicas/patologia , Vigília , Cesárea , Craniotomia/métodos
14.
World Neurosurg ; 168: e460-e470, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202341

RESUMO

OBJECTIVE: To investigate impact of patient factors and sacroiliac joint (SIJ) anatomical structure on SIJ fusion outcomes. METHODS: This single-center, retrospective, observational study evaluated patients diagnosed with SIJ dysfunction refractory to conservative measures who had available preoperative imaging of the sacrum and underwent SIJ fusion surgery. The impact of patient sociodemographics on pain improvement was assessed by Mann-Whitney U test. Differences in patient sociodemographics and outcome information between anatomical subtypes were assessed with χ2 and Kruskal-Wallis tests. χ2 test was used to compare joint anatomy distribution between studies analyzing SIJ variations. RESULTS: We included 77 total joints that underwent instrumentation. There were significant differences between the anatomical subtypes with female sex having significantly higher rates of non-normal joint anatomy. Younger age was significantly more common in bipartite/dysmorphic anatomy (53.9 years) than normal anatomy (70 years) (P < 0.05). There was a trend toward better outcomes in bipartite/dysmorphic and accessory variants, while semicircular defect and crescent variants trended toward worse outcomes. Nonnormal anatomy was significantly more frequent in our population than previous reports on nonpathological SIJ. CONCLUSIONS: A pathological SIJ has a significantly higher prevalence of variant joint anatomy. There appears to be a trend toward differences in surgical outcomes based on SIJ anatomy. Future research with larger sample sizes is necessary to confirm these differences.


Assuntos
Doenças da Coluna Vertebral , Fusão Vertebral , Humanos , Feminino , Pessoa de Meia-Idade , Articulação Sacroilíaca/diagnóstico por imagem , Articulação Sacroilíaca/cirurgia , Fusão Vertebral/métodos , Doenças da Coluna Vertebral/cirurgia , Sacro , Estudos Retrospectivos
16.
J Mol Neurosci ; 71(8): 1714-1722, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33595778

RESUMO

The P53N gene maps precisely to human chromosome sub-band 22q12.1-12.3, a region where loss of heterozygosity has been reported in 30% of astrocytic tumors and associated with progression to anaplasia. Moreover, a putative tumor suppressor gene has been indicated on 22q11 region involved in pathogenesis of ependymal tumors. Our objectives to examine the expression level of novel membrane-associated protein (termed P53N) encoded by a novel human gene on chromosome 22q12.1-12.3 in glioblastomas and ependymomas. Serial analysis of gene expression (SAGE) and immunofluorescence analysis of the P53N in the brain tumor tissues were performed. Our analysis revealed that there was high expression of the P53N mRNA in brain ependymoma and brain well-differentiated astrocytoma libraries. The P53N protein. P53N protein contains a high mobility group (HMG) domain at amino acid positions 301 to 360 expressed highly in glioblastoma and ependymoma specimens. Anti-P53N carboxyl-terminal peptide antibody localized the P53N protein to the cytoplasmic membranes of protoplasmic astrocytes in the glioblastoma and ependymoma specimens. These results are in good agreement with the SAGE analysis and the predicted transmembrane topology for the P53N protein and support a possible transmembrane model in which the P53N contains a predicted transmembrane region with its amino terminus localized to the inside of the cytoplasmic membrane.


Assuntos
Neoplasias Encefálicas/metabolismo , Cromossomos Humanos Par 22/genética , Ependimoma/metabolismo , Glioblastoma/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Neoplasias Encefálicas/genética , Clonagem Molecular , Ependimoma/genética , Glioblastoma/genética , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Domínios Proteicos
17.
SN Compr Clin Med ; 2(6): 836-843, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32704621

RESUMO

BACKGROUND: Current treatments for glioblastoma (GB), the most common and malignant primary brain tumor are inadequate and as such, the median survival for most patients with GB is on the order of months, even after cytoreductive surgery, radiation and chemotherapy. CASE DESCRIPTION: Current study reports two cases of glioblastoma (GB) with subventricular zone (SVZ) involvement. SVZ biopsies demonstrated the presence of hypercellularity, nestin immunoreactivity, and a Ki-67 labeling index (LI) of 1-2%. Interestingly, tumor morphology and proliferative indices are different in the SVZ specimens than the hemispheric recurrences, which displayed similar nestin immunoreactivity, but a greater LI of 10%. Biopsy specimens demonstrated both intense nestin immunoreactivity and GFAP immunoreactivity in and around the GB recurrence. Nestin positive cells were more abundant closer to the SVZ nearest to the dorsolateral horn of the left lateral ventricle, while GFAP immunoreactivity was more intense closer to the center of the tumor recurrence. Additionally, co-labeling of cells with Ki67 and several different progenitor markers (CD133, CD140, TUJ-1, and nestin) demonstrated that these cells found in and around the GB recurrence were actively dividing. Having failed standard therapy with evidence of bi-hemispheric spread and progression to GB, we report a novel approach of using intraventricular liposomal encapsulated cytarabine (DepoCyt) for the treatment for GB by suppressing glial progenitor cells that surround the ventricular system in patients with GB. CONCLUSIONS: MRI and immunohistochemistry demonstrated that the SVZ is the incubator for future recurrences of GB and propose targeting SVZ progenitor cells with intraventricular liposomal encapsulated Ara-C. Two patients treated using this novel regimen have demonstrated partial radiographic responses warranting further studies looking at targeting the subventricular zone.

18.
J Mol Neurosci ; 70(9): 1415-1424, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32367506

RESUMO

Allelic losses of the q13.3 region of chromosome 19 have been documented in all major types of diffuse gliomas, strongly suggesting the presence of a 19q13.3 tumor suppressor gene responsible for these malignancies. The P78 gene precisely maps to 19q13.3, the glioma candidate region, and encodes a recently identified novel protein (P78). The purpose of this study was to determine P78 protein expression in gliomas. Serial analysis of gene expression (SAGE) reveals P78 mRNA expression to be significantly reduced in high-grade gliomas such as glioblastoma (GB), as compared with the low-grade tumors including astrocytomas, oligodendrogliomas, and ependymomas. We observed the distribution of staining of P78 protein was concentrated on the cell membranes of the luminal epithelial cells, not cytoplasm. In contrast, the pre-immune serum controls demonstrated no staining. These results demonstrate that P78 protein is highly expressed in the cytoplasmic membranes of low but not high-grade astrocytomas, and correlates with grade of malignancy. In these double immunostaining experiments, the anti-Map-2 and anti-NeuN antibodies did not stain round cells that were stained with the anti-P78 carboxyl-terminal peptide antibodies, demonstrating that these round cells were not neurons, and likely protoplasmic astrocytes. Current results also suggest that the astrocytes stained with the anti-P78 carboxyl-terminal peptide antibody are likely protoplasmic astrocytes. We also observed preincubation of anti-P78 carboxyl-terminal antibodies with immunizing peptides abolished immunostaining in gliomas. These results suggest a role for the P78 protein in the process of abnormal growth in glial tumors.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Complexo Mediador/genética , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Membrana Celular/metabolismo , Cromossomos Humanos Par 19/genética , Células Epiteliais/metabolismo , Glioma/patologia , Humanos , Complexo Mediador/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
J Neurol Sci ; 418: 117102, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866816

RESUMO

Temozolomide (TMZ) therapy is the standard of care for patients with glioblastoma (GBM). Clinical studies have shown that elevated levels of DNA repair protein O (6)-methylguanine-DNA methyltransferase (MGMT) or deficiency/defect of DNA mismatch repair (MMR) genes is associated with TMZ resistance in some, but not all, GBM tumors. Another reason for GBM treatment failure is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK) and c-Met (hepatocyte growth factor receptor). As such, these tyrosine kinases serve as potential targets for GBM therapy. Thus, we tested two novel drugs: INC280 (Capmatinib: a highly selective c-Met receptor tyrosine kinase-RTK inhibitor) and LDK378 (Ceritinib: a highly selective anaplastic lymphoma kinase-ALK inhibitor), aiming to overcome TMZ resistance in MGMT-unmethylated GBM cells in in vitro cell culture models. Treatments were examined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, caspase-3 assay and western blot analysis. Results obtained from our experiments demonstrated that preconditioning with INC280 and LDK378 drugs exhibit increased MMR protein expression, specifically MMR protein MLH1 (MutL Homolog 1) and MSH6 (MutS Homolog 6) and sensitized TMZ in MGMT-unmethylated GBM cells via suppression of ALK and c-Met expression. INC280 and LDK378 plus TMZ also induced apoptosis by modulating downstream signaling of PI3K/AKT/STAT3. Taken together, this data indicates that co-inhibition of ALK and c-MET can enhance growth inhibitory effects in MGMT-unmethylated cells and enhance TMZ sensitivity in-vitro, suggesting c-Met inhibitors combined with ALK-targeting provide a therapeutic benefit in MGMT-unmethylated GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Preparações Farmacêuticas , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Benzamidas , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Imidazóis , Fosfatidilinositol 3-Quinases , Pirimidinas , Sulfonas , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Triazinas , Proteínas Supressoras de Tumor/genética
20.
J Neurosurg ; 111(2): 371-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19061351

RESUMO

OBJECT: The authors describe the utility of and outcomes after endoscopic transnasal craniotomy and skull reconstruction in the management of skull base pathologies. METHODS: The authors conducted a observational study of patients undergoing totally endoscopic, transnasal, transdural surgery. The patients included in the study underwent treatment over a 12-month period at 2 tertiary medical centers. The pathological entity, region of the ventral skull base resected, and size of the dural defect were recorded. Approach-related complications were documented, as well as CSF leaks, infections, bleeding-related complications, and any minor complications. RESULTS: Thirty consecutive patients were assessed during the study period. The patients had a mean age of 45.5 +/- 20.2 years and a mean follow-up period of 182.4 +/- 97.5 days. The dural defects reconstructed were as large as 5.5 cm (mean 2.49 +/- 1.36 cm). One patient (3.3%) had a CSF leak that was managed endoscopically. Two patients had epistaxis that required further care, but there were no complications related to intracranial infections or bleeding. Some minor sinonasal complications occurred. CONCLUSIONS: Skull base endoscopic reconstructive techniques have significantly advanced in the past decade. The use of pedicled mucosal flaps in the reconstruction of large dural defects resulting from an endoscopic transnasal craniotomy permits a robust repair. The CSF leak rate in this study is comparable to that achieved in open approaches. The ability to manage the skull base defects successfully with this approach greatly increases the utility of transnasal endoscopic surgery.


Assuntos
Craniotomia/métodos , Base do Crânio/cirurgia , Endoscopia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Procedimentos de Cirurgia Plástica/métodos , Retalhos Cirúrgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA